
Univerzita Karlova v Praze

Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Bc. Daniel Joščák

Hledáńı koliźı v hašovaćıch funkćıch

Katedra Algebry

Vedoućı diplomové práce: Doc. RNDr. Jǐŕı Tůma, DrSc.

Studijńı program: Matematika

Studijńı obor: Matematické metody informačńı

bezpečnosti

Děkuji Doc. RNDr. Jǐŕımu Tůmovi, DrSc. za cenné rady, náměty,
jazykovou úpravu a dlouhé hodiny konzultaćı, kterými přispěl k napsáńı
diplomové práce. Dále děkuji svým rodič̊um, protože bez jejich lásky a pod-
pory po dobu mého studia by tato práce nemohla vzniknout a také všem
svým přátel̊um, které jsem po dobu studia poznal.

Prohlašuji, že jsem diplomovou práci napsal samostatně a výhradně
s použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 21. dubna 2006 Daniel Joščák

1

Contents

Introduction 4

1 The MD5 Algorithm 6

1.1 The Compression Function 6
1.2 Notation . 9

2 Attack Principle 10

2.1 The Principle of our Algorithm 11
2.2 Satisfying of the Prescribed Conditions on R16, R17 and R18 . 12

3 Our Algorithm 15

3.1 Explanation of Algorithm for the First Block 16
3.1.1 Step 3.c of Algorithm 1. 16
3.1.2 Step 4. of Algorithm 1. 18
3.1.3 Improving the Probability of Z22[17] = 0 23

3.2 Explanation of Algorithm for the Second Block 24
3.2.1 Step 3.c of Algorithm 2. 24
3.2.2 Step 4. of Algorithm 2. 27

4 Klima’s and Stevens’ Algorithms 29

4.1 Stevens’ Algorithm . 29
4.2 Klima’s Algorithm . 30

5 Algorithm Complexity 34

5.1 Conditions on the Initial Vector 34
5.2 The Calculation of Complexity 38

6 Results 44

Conclusion 45

Bibliography 46

A Prescribed Conditions 47

B Procedure of Verification 51

2

Název práce: Hledáńı koliźı v hašovaćıch funkćıch

Autor: Daniel Joščák

Katedra: Katedra algebry

Vedoućı diplomové práce: Doc. RNDr. Jǐŕı Tůma, DrSc.

E-mail vedoućıho: tuma@karlin.mff.cuni.cz

Abstrakt: Hlavńım obsahem této práce je hledáńı koliźı v hašovaćı funkci
MD5. Představ́ıme náš nový algoritmus založený na metodě hledáńı
koliźı podle Wangové a kol. V pr̊uběhu psańı této práce Stevens
a Kĺıma publikovali dva nové algoritmy na hledáńı koliźı v této funkci.
Přineseme popis všech tř́ı algoritmů a také jejich výpočetńı složitost.

Kĺıčová slova: MD5, kolize, hašovaćı funkce

Title: Finding Collisions in Cryptographic Hash Functions

Author: Daniel Joščák

Department: Department of Algebra

Supervisor: Doc. RNDr. Jǐŕı Tůma, DrSc.

Supervisor’s e-mail address: tuma@karlin.mff.cuni.cz

Abstract: The main interest of this paper is finding collisions in the hash
function MD5. We present our new algorithm based on Wangs et al.
methods of finding collisions in MD5. While writing this thesis Stevens
and Klima published their fast algorithms for finding collisions. We
give a description of these algorithms and the calculation of com-
putianal complexity of all three algorithms.

Keywords: MD5, collision, cryptographic hash functions

3

Introduction

Hash functions belong among most important cryptographic primitives.
A hash function takes as input an arbitrary long binary message and maps it
to a binary output of a fixed length. The length of the output message is the
length of the hash function. The output is called the hash value of the input.
The hash value is also known as a“digital fingerprint” of the input message.
Just like a fingerprint can be used to identify (almost) uniquely a person
the hash value of a message can be used to identify (almost) uniquely the
message.

There are several requirements a well designed hash function should
satisfy. First of all, the algorithm for computing the hash value of a given
input should be very fast even for extremely long input messages. On the
other hand, the hash function should be “one-way” meaning that it is very
difficult to invert it, i.e. to find any input with the prescribed hash value.

Besides various other applications, cryptographic hash functions are also
used in digital signature schemes. Every digital signature scheme is based
on an asymmetric cipher. The digital signature of a document is obtained
by applying the decryption function of the cipher to the document. When
used in this context the decryption function is also called the signature func-
tion. As asymmetric ciphers are notoriously slow the decryption function
is applied only to the hash value of the document rather than to the docu-
ment itself. This restricts the length of the message to which the decryption
function is applied to the length of the hash function used in the digital
signature scheme.

However, replacing the document by its hash value in digital signature
schemes is not without danger. A digital signature of a message is simulta-
neously a digital signature of any other message with the same hash value
as the original one. Thus it is critical that the hash functions used in digital
signature schemes are collision resistant, meaning that it is computationally
infeasible to find two different messages with the same hash value. Only in
this case it is possible to assign uniquely a digital signature to the signed
document.

If a hash function is found not to be collision resistant then it does not
mean automatically that all digital signatures that used the hash function
earlier can now be repudiated. To falsify a signature of a given document
requires to find a second preimage of the hash value of the document i.e. to
find another message with the same hash value as the original document.
This is much stronger requirement than just to find any two different mes-
sages with the same hash value.

Less than two years ago collision resistance of several widely used hash
functions was broken. A group of researchers lead by Prof. X. Wang (of
Shandong University, China) presented in [2] collision resistance attacks on
MD5 and other hash functions. Since then a lot of research on various as-

4

hash function

hash function

message

digest

signed

message

digest

verify

message

digest

Figure 1: Hash function in a digital signature scheme

pects of the Wang et al. attacks was published, see e.g. [4], [5], [6], [7]. In
this master thesis we present various improvements of multi-message modi-
fication - the method behind the original Wang et al. algorithm for finding
collisions in MD5. We also present a new algorithm which is up to our
knowledge the fastest known algorithm based on multi-message modifica-
tions. While writing this thesis Stevens [8] and Klima [9] published their fast
algorithms for finding collisions in MD5. In their algorithms multi-message
modifications are followed by so-called tunelling. The idea of tunelling leads
to further improvements in running time of their algorithms. Stevens’ algo-
rithm is about twice as fast as our algorithm and the Klima’s algorithm is
about ten times faster than our. We also present a detailed calculation of
the computional complexity of the three algorithms and verify experimen-
tally that our results correspond very well to the actual running times of
the algorithms.

5

1 The MD5 Algorithm

In this section we give a description of the MD5 hash algorithm. We present
a slightly modified version to be more suitable for further cryptanalysis and
for the description of our algorithm for finding collisions.

The hash function MD5 was designed by Ronald Rivest in 1992. It is an
improved version of MD4 and a more detailed description of the algorithm
can be found in its specification RFC 1321 [1]. To be consistent we present
the entire description of the MD5 hash function.

First, the message is “padded” (extended) so that its length (in bits) is
congruent to 448 mod 512. Then the 64-bit representation of the message’s
length is appended to the result. Now the message length is a multiple of
512 bits and the message can be divided into 512-bit blocks. The initializa-
tion vector IV consisting of four 32-bit registers (words) (IV0, IV1, IV2, IV3)
together with the first message block form the input to the compression
function, denoted hMD5, of the MD5 algorithm. The output of the com-
pression function are four 32-bit registers. These registers together with the
second block of the message form the second input to the compression func-
tion. This process continues for all blocks of the message, always using the
output of the previous application of the compression function as a new IV

together with the next message block as the input to the next calculation of
the compression function value. The output of the last computation of the
compression function value is the output of the entire hash function. The
hash value of MD5 has 128 bits.

Mathematically we can summarize the process of calculating the MD5-
hash value of a message m as follows

MD5(m) = MD5(m′)

= MD5(M 0|M1| . . . |Mk)

= hMD5(hMD5(. . . hMD5(hMD5(IV,M0),M1) . . .),Mk−1),Mk),

where m is the input message, m′ its extended (padded) version, and M 0| . . . |Mk

is the decompositions of m′ into blocks of 512 bits.

1.1 The Compression Function

The most important part of the MD5 hash function is its compression
function hMD5. It has two inputs, a 128-bit initialization vector IV =
(IV0, IV1, IV2, IV3) and a 512-bit message block M . We will use notation
hMD5(IV,M), to denote the value of the compression function hMD5 at a
given initialization vector IV and a message block M .

6

First, four registers R−4, . . . , R−1 are initialized by IV in the following
way

R−4 = IV0

R−3 = IV3

R−2 = IV2

R−1 = IV1

Then 64 similar steps are executed, in each step the new value of register
Ri is computed. This computation is described in the following definition.

Definition 1.1. An MD5 step is a computation of the next register Ri

in the compression function hMD5 from known values of the previous four

registers Ri−4, Ri−3, Ri−2, Ri−1:

Zi = fi(Ri−1, Ri−2, Ri−3) + Ri−4 + Ki + Wi;

Z
/

i = Z≪si

i ;

Ri = Ri−1 + Z
/

i , for 0 ≤ i ≤ 63.

or equivalently,

Ri = Ri−1 + (fi(Ri−1, Ri−2, Ri−3) + Ri−4 + Ki + Wi)
≪si

The symbols used in this formula have the following meaning:

• The message block M is divided into sixteen 32-bit words, M0, ...,M15.
(We use the upper index for indexing the 512-bit message blocks and
the lower index for indexing the 32-bit registers.) The message block
M consisting of 16 words M0,M1, . . . ,M15 is expanded into the se-
quence of 64 words Wi as follows

Wi =















Mi, for 0 ≤ i ≤ 15,
M1+5i mod 16, for 16 ≤ i ≤ 31,
M5+3i mod 16, for 32 ≤ i ≤ 47,
M7i mod 16, for 48 ≤ i ≤ 63.

• Ki is a pseudorandom constant of length of 32 bits. The values of Ki

are given in [1].

• + means the addition modulo 232, where each word of length 32 bits
is interpreted as a binary expression of a natural number < 232.

7

• Z≪si

i is a left circular shift by si bits of the register Zi, the values of
si are given in [1].

• fi is a bitwise nonlinear Boolean function defined as

fi =















F (x, y, z) = (x ∧ y) ∨ (¬x ∧ z), for 0 ≤ i ≤ 15,
G(x, y, z) = (x ∧ z) ∨ (y ∧ ¬z), for 16 ≤ i ≤ 31,
H(x, y, z) = x⊕ y ⊕ z, for 32 ≤ i ≤ 47,
I(x, y, z) = y ⊕ (x ∧ ¬z), for 48 ≤ i ≤ 63.

Remark 1.2. Notice that the calculation of the value of the register Ri de-
pends only on the values of four previous registers Ri−4, . . . , Ri−1 and one
word Wi of the message block M . So it is necessary to keep the values of
only four registers Ri−3, Ri−2, Ri−1, Ri at every step of computation. This
view of the MD5 calculation is used in its specification RFC 1321[1].

Finally, the new initialization vector is computed as:

IV0 = R−4 + R60,

IV3 = R−3 + R61,

IV2 = R−2 + R62,

IV1 = R−1 + R63,

where “+” means addition modulo 232.

R
i
-3

R
i
-2

R
i
-1

f
i
(
R
i
-1,
R
i
-2,
R
i
-3
)
 +
 +
 +
 <<<
 s
i
 +
 R
i

M
i
,
j
 R
i
-1

Z
i
 Z
i

R
i
-4

Figure 2: MD5 compression function

8

1.2 Notation

We shall use two different notations for a sequence A of 32 bits. The se-
quence A will be called a word or a register. The hexadecimal notation is
emphasized by the prefix 0x. For example

0x8000e000 = 8 ∗ 167 + 14 ∗ 163.

The value of A in binary representation will be denoted by

[10000000 00000000 11100000 00000000]2 = 231 + 215 + 214 + 213.

The i-th bit in A is denoted by A[i], where i is the order of the bit. Bits
in A are in the order [A[31] . . . A[0]]2. By the symbol A[30 − 28] we denote
the sequence of bits A[30], A[29], A[28] of the register A. In the following
definition

n div k =
n− (n mod k)

k

, for a natural number n and a positive natural number k.

Definition 1.3. Let a = [a[31], a[30], . . . , a[0]]2 and b = [b[31], b[30], . . . , b[0]]2.
We set τ−1 = 0 and for i = 0, . . . , 31 we set

τi = a[i] + b[i] + τi−1 div 2.

The value of τi is called the carry from position i in the sum (a + b), for

−1 ≤ i ≤ 31.

Note that
(a + b)[i] = a[i] + b[i] + τi−1mod 2

for every i = 0, . . . , 31. The carry in the sum of more then two words can
be defined similarly.

9

2 Attack Principle

Wang et al. [2] presented the first pair of colliding messages for MD5 at
the rump session of the Crypto 04 conference in August 2004. Later at
Eurocrypt 2005 the same authors explained the basic features of their al-
gorithm for finding collisions in MD5 in more detail[3]. Their description
consisted of a detailed set of conditions, the so-called differential path, that
gives many conditions for the content of registers during the calculations of
the MD5-hash value of a message m = (M 0|M1) consisting of two blocks,
each of length of 512 bites. Although Wang at al claimed that their condi-
tions on the content of registers were sufficient for finding another message
n = (N0|N1) of the same length as m and with the same hash value as
M it was shown by Yajima and Shimoyamain in [6], by Liang and Lai in
[7] and by Stevens in [8] that Wang’s sufficient conditions in fact were not
sufficient and further conditions, especially on the form of the sum Zi used
in the calculation of the register Ri were needed for certain indexes i. We
will shortly describe the method of Wang et al. [3].

Although the specification of the MD5 hash function uses a fixed initial
vector IV, the attack of Wang et al. works for any initial vector. We will
denote the initial vector of the attack by IV 0, the first block of the first
message by M 0, the second block of the first message by M 1, the first block
of the second message by N 0 and the second block of the second message
by N1. To provide two different messages m = (M 0|M1) and n = (N 0|N1)
with the same hash value it is necessary and sufficient to prove that

hMD5(hMD5(M
0, IV 0),M1) = hMD5(hMD5(N

0, IV 0), N1),

(padding is overlooked since it is the same for both messages m and n, since
they have the same length). We set further IV 1

m = hMD5(M
0, IV 0) and

IV 1
n = hMD5(N

0, IV 0).
The collisions presented by Wang et al. in [2] and [3] as well as all other

colliding pairs found by various authors since the first Wang’s announcement
[2] have the following properties (so- called differentials)

∆0 = M0 −N0 = (0, 0, 0, 0, 231 , 0, 0, 0, 0, 0, 0,+215 , 0, 0, 231 , 0) (1)

∆1 = M1 −N1 = (0, 0, 0, 0, 231 , 0, 0, 0, 0, 0, 0,−215 , 0, 0, 231 , 0) (2)

IV 1
m − IV 1

n = (231, 231 + 225, 231 + 225, 231 + 225). (3)

Wang et al. then proceed with giving precise forms for modular differences
Ri−R′

i and xor differences Ri⊕R′
i for i = 0, . . . , 63, where Ri, R′

i are the reg-
isters obtained during the calculation hMD5(IV 0,M0) and hMD5(IV 0, N0),
as well as precise forms of IV 1

m ⊕ IV 1
n and forms of modular and xor differ-

ences for registers Ri, R′
i obtained during the calculation of hMD5(IV 1

m,M1)
and hMD5(IV 1

n , N1). This is what they call the differential path for MD5

10

collision. From the differential path they derived a set of conditions for par-
ticular bits in the registers R0, . . . R63, obtained when processing the first
block M 0, for particular bits in IV 1

m and for particular bits in the regis-
ters R0, . . . R63, obtained when processing the second block M 1 (i.e. when
calculating hMD5(IV 1

m,M1)). They claimed these conditions were sufficient
for a message m = (M 0|M1) satisfying the conditions and another message
n = (M0 + ∆0|N0 + ∆1) to have the same hash value. As we stated above
the claim about sufficiency of their conditions is false and in fact further
conditions on Zi for some indexes i are needed. However, it should be noted
that all collisions in MD5 found so far have the same differential path as de-
scribed by Wang et al. in [3]. The conditions we used in our algorithms are
based on conditions in [7]. The list of all conditions is contained in Tables
31, 32, 33 and 34. In what follows we call them the prescribed conditions or
briefly the conditions. Notation we use is taken from [8]. For the bit Ri[j],
i = −4, . . . , 63 and j = 0, . . . , 31:

Ri[j] =















’.’ if there is no condition on the bit,
’0’, ’1’ if Ri[j]must be the value 0 or 1,

’^’ if Ri[j]must be equal to Ri−1[j],
’!’ if Ri[j]must not be equal to Ri−1[j].

Bits in registers that are not prescribed are called free bits. Bits in registers
that have a prescribed value are called fixed or prescribed bits.

2.1 The Principle of our Algorithm

The general method of the attack is to compute messages Mi, 0 ≤ i ≤ 15),
from the first 16 registers Ri, where Ri, 0 ≤ i ≤ 15, satisfies the prescribed
conditions. Then we can continue in computing of registers Ri, 16 ≤ i ≤
63, and check (verify) if the prescribed conditions are satisfied. If we find
a condition that is not satisfied then we stop the computing and change
some bits in Ri, for some 0 ≤ i ≤ 15. Then we calculate a new message
word Mi for indexes i that were affected by the change in registers Ri and
continue in computing and verifying of the conditions for Ri, i ≥ 16. If all
prescribed conditions are satisfied we have found the first (or the second)
block of the colliding message m. The other colliding message n is then
given by (1) (or (2)).

By the procedure of verification or simply the verification we will call the
process of calculating the values of registers starting from R16 and checking
the prescribed conditions for Ri, i ≥ 16. If some condition is not verified
then we start changing some bits in Ri for some 0 ≤ i ≤ 15. Then we
compute the affected message words Mi. By the generating of a candidate

for collision we mean the process of changing bits in registers and computing
affected message words Mi, where by a candidate for collision we mean the
message block that can be calculated from the modified registers. We want

11

to note that the computation of affected message words Mi does not have to
be done before the procedure of verification is started. In fact, the changes
in Ri does not have to affect the Mi needed in calculation of R16 (or the first
step in the verification procedure). We can use advantage of that fact and
calculate the affected message word only after some of the first conditions
are checked, what will make our algorithm faster.

The complexity of that kind of attack depends on the number of con-
ditions we need to check and on the probability that these conditions are
satisfied. The efficiency of this method can be improved if we can somehow
satisfy some of the prescribed conditions for Ri, 16 ≤ i ≤ 63. In Section
2.2 we will show how the prescribed conditions for Ri, 16 ≤ i ≤ 18 can
be satisfied by specific changes in Ri, 12 ≤ i ≤ 15. This kind of message
modification we use for finding the second colliding block.

For finding the first colliding block we make use of the observation that
there are no conditions for registers R0, R1 which means we do not have to
set their value in advance. The message word M1 is used message word M1

in the calculation of R16 . This means we can set the value of register R16

as we need to and calculate M1 from the registers Ri, i = 12, . . . , 16. Four
prescribed conditions for R16 are then fulfilled. The message word M6 is
used in the calculation of R17, which can be calculated from Ri, i = 2, . . . , 6.
Similarly, the message word M11 used in calculation of R18 can be calculated
from Ri, i = 7, . . . , 11. This means we can calculate the value of R17 and
R18, without knowing the values of R0, R1. In Section 2.2 we will show how
we can increase the probability that conditions for R17 and R18 are fulfilled.
Now we can choose the value of the register R19 and calculate the message
word M0 from Ri, i = 15, . . . , 19. Then we can calculate R0, R1 and the rest
of the message words Mi, i = 2, . . . , 5. Furthermore, after that we can just
change bits in R19 and verify the conditions for Ri, i = 20, . . . , 63 and IV 1.
The registers R17 and R18 will not change. In Section 3.1.2 we present an
analysis how to set the value of the register R19 that allows us to increase
the probability of satisfying the conditions for R20 and R21 and to specify
the probability that condition Z22[17] is satisfied. That means the procedure
of verification starts with the calculation of the register R20 and the process
of generating a new candidate for collision starts with changing of bits in
R19.

2.2 Satisfying of the Prescribed Conditions on R16, R17 and

R18

The method of satisfying prescribed conditions for registers R16, R17 and
R18 we will be explained by the following example. Suppose we want to
satisfy the condition Ri[j] = 0 or Ri[j] = 1. In the equation

Ri = Ri−1 + (G(Ri−1, Ri−2, Ri−3) + Ri−4 + Ki + Wi)
≪si

12

We set :

Zi = (G(Ri−1, Ri−2, Ri−3) + Ri−4 + Ki + Wi)

Z
/

i = (Zi)
≪si

Gi = G(Ri−1, Ri−2, Ri−3)

KMi = Ki + Wi

KRMi = Ki + Ri−4 + Wi

KGMi = Ki + Gi + Wi

Further we denote the bits in these registers as it is in the Tables 1, 2, 3.

Ri−1[j − 0] bj bj−1 bj−2 . . . b0

Z
/

i [j − 0] zj zj−1 zj−2 . . . z0

Ri[j − 0] xj xj−1 xj−2 . . . x0

Table 1: Ri

Ri−4[k − 0] ak ak−1 ak−2 . . . a0

Gi[k − 0] gk gk−1 gk−2 . . . g0

KMi[k − 0] mk mk−1 mk−2 . . . m0

Zi[k − 0] zj zj−1 zj−2 . . . z0

Table 2: Zi, k ≡ j − si mod 32

Ri−3[k − 0] dk dk−1 dk−2 . . . d0

Ri−2[k − 0] ck ck−1 ck−2 . . . c0

Ri−1[k − 0] bk bk−1 bk−2 . . . b0

Gi gk gk−1 gk−2 . . . g0

Table 3: Gi, k ≡ j − si mod 32

We want to satisfy the condition xj = 0 or xj = 1. There are several
places where we can influence the value of xj :

• Bits bj , bj−1, bj−2, . . . in Ri−1 are free, meaning there are no prescribed
conditions for them. We know:

xj ≡ bj + zj + τj−1 mod 2 (4)

13

To choose the right value of bj (4) we need to know the value of τj−1. The
equality τj−1 = v ∈ {0, 1} holds if and only if for the largest l ≤ j − 1 such
that bl = zl we have bl = zl = v. In most cases we will set bj−1 = zj−1.
Then we immediately know that τj−1 = zj−1 and from (4) we can calculate
the unknown bj .

• Bits bj, bj−1, . . . in Ri−1 are fixed, meaning there are prescribed condi-
tions for these bits, so we need to arrange bits zj , zj−1, . . . in Z

/

i so that the
equation (4) holds. This can be done in Ri−4 or in Gi or in Wi. We must
find free bits in these registers and change them in a way that we get the
desired bits in Z

/

.

Example 2.1. We need to arrange bits zk, zk−1, zk−2, in Z
/

i , to be (1, 1, 0) (or
6 in decimal expansion). Furthermore, the bits ak, ak−1, ak−2, ak−3 in Ri−4

are free. Denote the sum Gi + Ki + Wi by Y and by yk, yk−1, yk−2, yk−3 the
bits Y [k − (k − 3)]. Then we can write the equation:

(4ak + 2ak−1 + ak−2) + (4yk + 2yk−1 + yk−2) + τk−3 ≡ 6 mod 8. (5)

If yk−3 = 0, then we set ak−3 = 0 and obtain τk−3 = 0. If yk−3 = 1, then
we set ak−3 = 1 and obtain τk−3 = 1. This allows us to solve (5) for the
unknowns ak, ak−1, ak−2.

The situation when we can change the bits in Gi is similar. We denote
again Y = Ki + Ri−4 + Wi, then solve the equation

(4gk + 2gk−1 + gk−2) + (4yk + 2yk−1 + yk−2) + τk−3 ≡ 6 mod 8

for the unknowns gk, gk−1, gk−2 and set the bits in Ri−1, Ri−2 and Ri−3 so
that

G(Ri−1, Ri−2, Ri−3) = (gk, gk−1, gk−2, gk−3).

The most difficult situation happens when we need to change some bits
in the message register Wi = Mi′ , for i = 16, 17, 18 i.e. i′ = 1, 6, 11, because
we do not have enough free bits in Ri−1, Ri−2, Ri−3 and Ri−4. In this case
we need to write down the equation for the computation of Mi′ , i′ = 1, 6, 11,
and see whether we can influence specified bits in Mi′ by changing of some
of the bits in the registers Ri′ , . . . , Ri′−4. An example of changing bits
in Mi′ can be found in 3.2.1, where we attempt to satisfy the condition
R16[3] = R15[3].

14

3 Our Algorithm

The algorithm we present consists of two separated parts. The first one,
generates the first block of a colliding message. The second one finds the
second block of a message to complete the collision. We begin with the
pseudocode of both parts. We recall that the conditions for the verification
procedure are described in Appendix B in Tables 31 - 34.

Algorithm 1 Finding the first block

Input: Initial vector IV 0

Output: Pair of messages M 0, N0, IV 1
m, IV 1

n

1: R−4 ← IV 0
0 , R−3 ← IV 0

3 , R−2 ← IV 0
2 , R−1 ← IV 0

1 ;
2: Initialize R2, R3, . . . , R16 with regard to the fixed bits;
3: repeat

(a) Randomly change free bits in R2, R3, R7, R8, R9, R10, R11;

(b) Calculate M6, M7, M8, M9, M10, M11, M12, R17, R18;

(c) if one of the conditions for R17 and R18 is false then

- Try to satisfy them by specific changes in registers R13−R16

- Calculate R17 and R18 again;

(d) if conditions for R17 and R18 are true then

- Calculate M13, M14, M15, M1;
- if M15[17] = 0 then execute step 4;

4: Loop over all possible choices in R19[6− 0] and R19[14− 8]

(a) Change R19;

(b) Calculate M0, R0, R1, M5, R20, R21;

(c) if R20[31] 6= 0 or R20[17] 6= R19[17] or R21[31] 6= 0 then

- Change some bits in R19 to satisfy the conditions;
- Calculate M0, R0, R1, M5, R20, R21 again;

(d) if R20[31] = 0 & R20[17] = R19[17] & R21[31] = 0 then (Verify the
candidate)

- Calculate R22,M4, R23,M2,M3, R24, R25, . . . , IV 1;
- Verify the conditions for R22, . . . , R63, IV 1

m;
- if all conditions are true then return M 0, N0, IV 1

m, IV 1
n .

15

Algorithm 2 Finding the second block

Input: Pair of initial vectors IV 1
m, IV 1

n (output from Algorithm 1)
Output: Pair of messages M 1, N1.

1: R−4 ← IV 1
m,0, R−3 ← IV 1

m,3, R−2 ← IV 1
m,2, R−1 ← IV 1

m,1

2: Initialize R1, R2, . . . , R15 so that the fixed bits are satisfied;
3: Loop until conditions for R16, R17, R′

17 are true

(a) Randomly change free bits in R0, . . . , R6;

(b) Calculate M1, M6, R16, R17, R
′
17, where R′

17 is calculated from
R13, R

′
14, R15, R16,M6 and R′

14 is R14 with changed bit R14[17];

(c) if conditions for R16, R17, are not satisfied then

- try to satisfy them by specific changes in R12, R13, R14, R15;
- calculate R16, R17;
- calculate R′

17 from R13, R
′
14, R15, R16,M6, where R′

14 is R14

with changed bit R14[17];

4: Compute M0,M2,M3,M4,M5;
5: repeat (Generate a new candidate)

(a) Change free bits in R7, R8, R9, R10, R11;

(b) Compute M11, R18;

(c) if R18[31] 6= 0 then replace R14 by R′
14 and compute R18 from

R′
14, R15, R16, R

′
17;

(d) if R18[17] = 0 and Z18[17 − 3] 6= (1, 1, . . . , 1) then (Verify the
candidate)

- Compute R19, R20, M10, R21, M15, R22, R23, M7, M8, M9,
M12, M13, M14, R24, . . . , R63 ;

- Verify the conditions for R22, . . . , R63;
- if all conditions are true then return M 1, N1;

3.1 Explanation of Algorithm for the First Block

3.1.1 Step 3.c of Algorithm 1.

We want to satisfy the conditions for R17 and R18 in this step. The general
method of satisfying the conditions is described in 2.2. Here we describe
the process of satisfying the conditions for R17 and R18 in the first block.
Notation we use is taken also from 2.2. The conditions to be satisfied are
• R17[31] = 0 and R17[29] = R16[29]. We have fully under our control

the register R16. We will set the bits R14[31 − 28] = (0, 0, 0, 0) and arrange

16

the bits Z
/

17[31−28] = (0, 0, 0, 0). The conditions R17[31] = 0 and R17[29] =
R16[29] = 0 then follow from the equation R17 = R16 + Z

/

17 as can be seen
from Table 4.

31 30 29 28

R16 0 0 0 0
Z

/

17 0 0 0 0

R17 0 0 0 ?

Table 4: R17[31] = 0

22 21 20 19 18

KRM16 y22 y21 y20 y19 y18

R14 0 0 0 0 0

R15 c22 c21 c20 c19 c18

R16 - - - - -

Z17 0 0 0 0 ?

Table 5: R17[31] = 0

We have
Z17 = (G(R16, R15, R14) + KRM17).

To achieve the desired bits in Z17 we will change bits in G(R16, R15, R14).
We set R14[22 − 17] = (0, 0, 0, 0, 0). Then G(R16, R15, R14)[22 − 17] =
R15[22−17]. Now we need to solve the following equation for the unknowns
c22, c21, c20, c29

(8y22 + 4y21 + 2y20 + y19) + (8c22 + 4c21 + 2c20 + c19) + τ18 ≡ 0 mod 16. (6)

If yk−4 = 0, then we arrange τ18 = 0 by setting ck−4 = 0, and if yk−4 = 1,
then we arrange τ18 = 1 by setting ck−4 = 1. Now the equation (6) can be
solved. The changes in R14 and R15 could be done because the bits are free.

• R17[17] = 1. We have another prescribed condition R16[17] = 0 which
causes we can not fulfill the condition for R17[17] only by changes in R16.
To control τ17 in R16 + Z

/

17, we set Z
/

17[16] = R16[16]. Then we can find
out, how we need to arrange Z

/

17[17]. Bits Z
/

17[17 − 16] can be arranged by
changes in G17 in the same way as we did for the condition R17[31] = 0.
The situation is described in Tables 6 and 7.

17 16

R16 0 b16

Z
/

17 z17 z16

R17 0 .

Table 6: R17[17] = 1

8 7 6

KRM16 y8 y7 y6

R14 1 1 1

R15 . . .
R16 b8 b7 b6

Z
/

17 z17 z16 .

Table 7: R17,31 = 0

17

• R18[31] = 0. To control τ30 in R17 + Z
/

18, we set Z
/

18[30] = R17[30].
Then we find out how we need to arrange the bit Z

/

18[31]. We arrange the
bits Z

/

18[31 − 30] in R14[17 − 16], but this time we need to calculate τ15 in
R14 + KGM18 in the algorithm, because it can not be set as we did for the
previous conditions. The situation is described in Tables 6 and 7.

31 30

R17 0 b30

Z
/

18 z31 z30

R18 0 .

Table 8: R18[31] = 0

17 16 15

R14 a17 a16 1
KGM18 y17 y16 y15

Z
/

17 z31 z30 .

Table 9: R18[31] = 0

• R18[17] = 0. We satisfy this condition in our algorithm only prob-
abilistically with probability 3

4 . That means we increase the probability
of fulfilling the condition from obvious 1

2 to 3
4 . We will try to change bit

Z
/

18[17], what will change the bit R18[17]. The change of bits R15[3] = R16[3]
will produce the change of G18[3] and Z

/

18[17] only in case R17[3] 6= R16[3].
We suppose that the condition R17[3] 6= R16[3] holds with the probability
1
2 . Then with the probability 1

2 we can successfully change R18[17]. The
situation is described in Tables 10 and 11.

17 16

R17 0 .
Z

/

18 z17 .

R18 0 .

Table 10: R18[17] = 0

3 2 1

KRM18 y3 . .
R15 c3 . .
R16 c3 . .
R17 b3 . .

Z
/

18 z17 . run .

Table 11: R18[17] = 0

3.1.2 Step 4. of Algorithm 1.

First, we show how a change in the bit R19[i] affects the registers R20, R21.
For simplicity we consider only the case R19[i] = 0. Then

R′
19 = R19 + 2i. (7)

The other case R19[i] = 1 and R′
19 = R19 − 2i is similar. For the register

R′
20 we have

R′
20 = R′

19 + (R16 + G(R′
19, R18, R17) + M′

5 + K20)
≪5 (8)

Changing R19 will affect only the terms highlighted by bold.
- The term R′

19 in (8) will add difference +2i.

18

- The term G(R′
19, R18, R17) in (8) after left shift rotation will add the dif-

ference +2i+5 in case R17,i = 1 and no difference in case R17,i = 0. We will
denote this as (+2i+5)χ(R17[i]=1), where

χ(condition) =

{

1, condition = TRUE

0, condition = FALSE

The expression χ(condition) we will call the χ-coefficient of the difference
+2i+5.
- Term M ′

5 is calculated from the message word

M ′
5 = (R5 −R4)

≪24 −R′
1
− F (R4, R3, R2)−K5 (9)

where R′
1 is affected by the change in R19. We can write the following

equations for other affected registers.

R′
1 = R′

0
+ (R−3 + F (R′

0
, R−1, R−2) + M1 + K1)

≪12 (10)

R′
0 = R−1 + (R−4 + F (R−1, R−2, R−3) + M′

0
+ K0)

≪7 (11)

M ′
0 = (R′

19
−R18)

≪12 −R15 −G(R18, R17, R16)−K19 (12)

From (7) and (12) we have

M ′
0 = M0 + 2i+12 (13)

and from (11) and (13) we get

R′
0 = R0 + 2i+19. (14)

Denote k = (i + 19) mod 32. Then the bit k + j, 0 ≤ j ≤ 31 in the term
F (R′

0, R−1, R−2) will be changed if the following conditions are satisfied

1. R−1,(k+j) 6= R−2,(k+j).

2. R′
0,(k+j) 6= R0,(k+j) i.e. carry in R0 + 2i+19 affected the bit k + j.

3. (k + j) < 32 i.e. carry in R0 can affect only bits from position k to
position 31.

Using χ-coefficients we can rewrite this fact in the following form

F (R′
0, R−1, R−2) = F (R0, R−1, R−2)

± 2kχ(R−1[k]6=R−2[k])

± 2k+1χ(R−1[k+1]6=R−2[k+1])χ(R0[k+1]6=R′

0
[k+1])χ(k+1<32)

± 2k+2χ(R−1[k+2]6=R−2[k+2])χ(R0[k+2]6=R′

0
[k+2])χ(k+2<32)

± . . .

19

Then from (10) and (9) it follows

R′
1 = R1 + 2i+19

± 2i+31χ(R−1[k]6=R−2[k])

± 2iχ(R−1[k+1]6=R−2[k+1])χ(R0[k+1]6=R′

0
[k+1])χ(k+1<32)

± 2i+1χ(R−1[k+2]6=R−2[k+2])χ(R0[k+2]6=R′

0
[k+2])χ(k+2<32)

± . . .

M ′
5 = M5 − 2i+19

∓ 2i+31χ(R−1[k]6=R−2[k])

∓ 2iχ(R−1[k+1]6=R−2[k+1])χ(R0[k+1]6=R′

0
[k+1])χ(k+1<32)

∓ 2i+1χ(R−1[k+2]6=R−2[k+2])χ(R0[k+2]6=R′

0
[k+2])χ(k+2<32)

∓ . . .

and finally from (8) we get

R′
20 = R20 + 2i

+ 2i+5χ(R17,i=1)

− 2i+24

∓ 2i+4χ(R−1[k]6=R−2[k])

∓ 2i+5χ(R−1[k+1]6=R−2[k+1])χ(R0[k+1]6=R′

0
[k+1])χ(k+1<32)

∓ 2i+6χ(R−1[k+2]6=R−2[k+2])χ(R0[k+2]6=R′

0
[k+2])χ(k+2<32)

∓ . . . (15)

where k = (i + 19) mod 32.
Then we also have

R′
21 = R′

20 + (R17 + G(R′
20,R′

19, R18) + M10 + K21)
≪9. (16)

The term R′
20 will add the same differences as in (15). The value of the

nonlinear function G will change at the position j if one of the following
conditions is satisfied.

1. R18[j] = 0 and R′
19[j] 6= R19[j]

2. R18[j] = 1 and R′
20[j] 6= R20[j]

20

Then from (15) we get

R′
21 = R21 + 2i

+ 2i+5χ(R17,i=1)

− 2i+24

∓ 2i+4χ(R−1[k]6=R−2[k])

∓ 2i+5χ(R−1[k+1]6=R−2[k+1])χ(R0 [k+1]6=R′

0
[k+1])χ(k+1<32)

∓ 2i+6χ(R−1[k+2]6=R−2[k+2])χ(R0 [k+2]6=R′

0
[k+2])χ(k+2<32)

∓ . . .

± 2i+9

± 2i+5+9χ(R18[i+5]=1)χ(R17 [i]=1)

± 2i+24+9χ(R18[i+24]=1)

± 2i+4+9χ(R18[i+4]=1)χ(R−1[k]6=R−2[k])

± 2i+5+9χ(R18[i+5]=1)χ(R−1[k+1]6=R−2[k+1])χ(R0[k+1]6=R′

0
[k+1])χ(k+1<32)

± 2i+6+9χ(R18[i+6]=1)χ(R−1[k+2]6=R−2[k+2])χ(R0[k+2]6=R′

0
[k+2])χ(k+2<32)

± . . . (17)

From (15) and (17) we see that the term +2i+5χ(R17,i=1) strongly depends
on the bit R17[i]. It means if the register R17 contains many 0’s then this
term will not contribute to differences R′

20 −R20 and R′
21 −R22.

The second observation we should make is the fact that the term

∓2i+4χ(R−1[k]6=R−2[k])

depends on the registers R−1 and R−2, which are words of the initial vector
for the attack. If we can choose the IV , then we can set R−1 = R−2 and
avoid all differences of that kind in (15) and (17).

The last observation we should make is the fact that not all the condi-
tions in the χ-coefficients of the differences in (15) and (17) have the same
probability. For example the term

∓2i+6χ(R−1 [k+2]6=R−2[k+2])χ(R0 [k+2]6=R′

0
[k+2])χ(k+2<32)

in (15) will add the difference ∓2i+6 if and only if R−1[i +21] 6= R−2[i + 22]
and there is carry in R0 + 2i+19 from bit i + 19 to i + 21, which means
that R0[i + 19] and R0[i + 20] both have to be equal 1. If we suppose
R−1[i+21] 6= R−2[i+22], then the probability that R0[i+19] = R0[i+20] = 1
is 1

4 .

Now there are two interesting questions:

1. Which bit in R19 do we need to change, in order to change (with high
probability) the bits R20[17], R20[31], R21[31]?

21

2. Which bits in R19 can we change, in order not to change (with high
probability) any of bits R20[17], R20[31], R21[31]?

An answer to the first question will help us to increase the probability
of satisfying the conditions in R20, R21. From (15) and (17) we choose the
bits at positions 7, 25, 22. We give an overview of most probable changes
that these differences bring to registers R20 and R21 in Table 12. We want
to note that in column R21 we omit the differences that are the same for
R20 and R21.

R20 R21

±27 ±27,±212,∓231, ±216,±221,±28,

∓211,∓212,∓213 ±220,±221,±222

±225 ±225,±230,∓217, ±22,±27,±226,

∓229,∓230,∓231 ±26,±27,±28

±222 ±222,±227,∓214, ±231,±24,±223,

∓226,∓227,∓228 ±23,±24,±25

+20 +20,+25,−224, ±29,±214,±21,

∓24,∓25,∓26 ±213,±214,±215

Table 12: Change in R19

We claim that:

1. if R20[31] 6= 0, then the probability of satisfying the condition R20[31] =
0 can be increased by changing the bit R19[7]. This change can also
change bit R21[31].

2. if R20[17] 6= R19[17], then the probability of satisfying the condition
R20[17] = R19[17] can be increased by changing the bit R19[25].

3. if R21[31] 6= 0, then the probability of satisfying the condition R21[31] =
0 can be increased by changing the bit R19[22].

An intuitive proof of this claim follows from (15) and (17) From the same
reason we claim that if a new collision candidate is generated from the
register R19 by adding difference +20 to the value of the register R19, then
the new candidate will (with a high probability) satisfy the conditions for
R20 and R21. Better statistical analysis would be required. We decided to
generate a new register R19 by changing the bits R19[6− 0] and R19[14− 8].
The change is done by adding the difference +20 to the previous register
R19. If the conditions of the registers R20 and R21 are not satisfied, then we
change in the register R19 the bits at the positions i = 7, 22, 25.

22

Implementing of the first block of the attack showed that for the original
IV the probability of fulfilling the if condition in step 4.c was only in 15.78%
of cases. That means that the number of calculations MD5 step in one run
of loop 4 Algorithm 1 was in average

(0.8422 ∗ 6 + 0.1578 ∗ 12)
.
= 6.9468 MD5 steps.

The if condition in step 4.d of Algorithm 1 was fulfilled with the probability
approximately 86.67%. That means we generated

(0.8667)214 .
= 14200.0128

of collision candidates that were satisfying all prescribed condition for Ri, i ≤
21 in the whole loop 4.(214 runs). The total number of MD5 steps that
were needed to create these candidates was k0 + (6.9468)214 , where k0 is
the average number of MD5 steps calculated in the step 3 of Algorithm 1
before executing the step 4. The average price for generating of one of these
candidates is then

k0 + (6.9468)214

14200.0128
.
= 8.0242 MD5 steps,

where we estemated k0 ≈ 27.
For a random initial vector was the average price for generating of colli-

sion candidate satisfying all prescribed condition for Ri, i ≤ 21, even smaller
- approximately 7.86 MD5 steps.

Tests for estimating of the probabilities for if conditions in the loop 4.
were done for more than 233 runs of the loop 4 of Algorithm 1.

3.1.3 Improving the Probability of Z22[17] = 0

After implementing the algorithm for the first block we observed that the
first condition in the verifications procedure is not satisfied with the expected
probability 0.5. In some cases the probability was remarkably higher, in
some cases it was remarkably lower. We will explain what was behind this
observation.

The condition on Z22[17] = 0 is checked only when all the previous
prescribed conditions are satisfied. That means R18[17] = 0 and we have
specified the prescribed condition R19[17] = R20[17] = 0. (Saying otherwise
we have set bit R19[17] = 0). That causes G(R19, R20, R21)[17] = 0. The
message word M15 used in the calculation of Z22 is not affected by the change
in R19 and remains in the step 4 the same, but we do not know it’s value.
We noticed that the probability of the satisfying the condition Z22[17] = 0
was remarkably higher than 1

2 in case M15[17] = 1 and remarkably lower
than 1

2 in case M15[17] = 0. The situations are described in Tables 13 and
14.

23

17 16

R18 0 .
G22 0 .
M15 1 .
K22 0 1

Z22 0 .

Table 13: Z22[17], good
situation

17 16

R18 0 .
G22 0 .
M15 0 .
K22 0 1

Z22 0 .

Table 14: Z22[17], bad
situation

The difference is caused by the carry from the 16-th bit τ16 in the sum
R18 + G22 + M15 + K22. For the value of τ16 can be calculated from the
values of the words R18, G22,M15,K22 as

τ16 =
(

(R18 mod 217) + (G22 mod 217) + (M15 mod 217) + (K22 mod 217)
)

div 2.

We denote by S the sum on the right side of the equation. The value
(K22 mod 217) = 12454 in decimal expansion. If we suppose that the values
of R18 mod 217, G22 mod 217, M15 mod 217 are “random” i.e. chosen from
the uniform distribution, then

τ16 =















0 if S ∈ [124545, 217 − 1]
.
= 1.66%

1 if S ∈ [217, 218 − 1]
.
= 33.33%

2 if S ∈ [218, 218 + 217 − 1]
.
= 33.33%

3 if S ∈ [218 + 217, 517758]
.
= 31.67%

This fact explaines why the probability of satisfying the condition Z22[17] =
0 was higher in case M1[15] = 1 then in case M1[15] = 0. We needed
τ16 = 1 or 3 which has probability approximately 65% in the first case and
we needed τ16 = 0 or 2 which has the probability approximately 35% in the
second case. Then we improved our algorithm for the first block by adding
the condition m15[17] = 0 to the step 3.d of the algorithm for the first block.
This condition will ensure that the probability of the condition Z22[17] = 0
is satisfied will be 0.65.

3.2 Explanation of Algorithm for the Second Block

3.2.1 Step 3.c of Algorithm 2.

We are satisfying the prescribed conditions for R16 and R17 in this step. The
general method of satisfying the conditions is described in 2.2. Computation
of the register R′

17 is being done to prepare for step 4. and will be described
in 3.2.2.

The conditions to be satisfied are

24

3 2 1 0

R15 b3 b2 b1 b0

Z
/

16 z3 z2 z1 z0

R16 x3

Table 15: R16,3 = R15,3

30 29 28 27

R12 0 1 1 1
G16 ? 1 1 1
M1 m30 m29 m28 m27

K16 1 1 1 0

Z16 z3 z2 z1 z0

Table 16: Z16

• R16[3] = R15[3]. We want to satisfy the condition by changing of bits
R15,3−0. The situation is described in Table 15.

If Z
/

16[3 − 0] 6= (1, 0, 0, 0), then we can set the bits b2, b1, b0 so that
b3 = x3. If Z

/

16[3 − 0] = (1, 0, 0, 0), the condition R16[3] = R15[3] can not
be satisfied by changing of b2, b1, b0. In this case (1

16 of all possibilities) we
need to change at least one bit in M1[30 − 27].

M1 = (R1 −R0)
≪(32−12) − (F (R0, R−1, R−2) + R−3 + K1)

That means M1[30 − 28] can be changed by some change in R0[10 − 8] or
R1[10− 8]. Then we obtain Z

/

16[3− 0] 6= (1, 0, 0, 0) and the condition can be
satisfied by changing of bits b2, b1, b0.

• R16[15] = R15[15]. We satisfy the condition by the specific changes in
R15 and R12 as it is shown in Tables 17 and 18.

15 14

R15 b15 0

Z
/

16 0 0

R16 x15 x14

Table 17: R16[15] = R15[15]

10 9 8

R12 a10 a9 a8

KGM16 y10 y9 y8

Z16 0 0 ?

Table 18: Z16

We set bit R15[14] = 0 and then arrange Z
/

16[15− 14] = (0, 0). Then the
condition R16[15] = R15[15] is satisfied. Bits in Z

/

16[15 − 14] we arrange in
R12[10− 8] as it is shown in Table 18.

• R16[17] = 0. We have free bits R15[17− 16], that means we can satisfy
the condition by changing of these bits. The situation is shown in Table 19.
We set bit b16 = z16 = τ16. Bit b17 is the solution of the following equation

b17 + z17 + τ16 ≡ 0 mod 2.

25

17 16

R15 b17 b16

Z
/

16 z17 z16

R16 0

Table 19: R16[17] = 0

• R17[17] = 1. According to R16[16] we find out how we need to arrange
bits in Z

/

17,17−16. If b16 = 0, then we need to arrange Z
/

17[17−16] = (1, 0). If

b16 = 1, then we need Z
/

17[17− 16] = (0, 1). Z
/

17[17− 16] can be arranged by
changing G17[8−6]. Bits G17[8−6] we arrange by setting R14[8−6] = (0, 0, 0),
which causes G17[8 − 6] = R15[8 − 6]. The situation is described in Tables
20 and 21.

17 16

R16 0 b16

Z
/

17 z17 z16

R17 1 ?

Table 20: R17,17 = 1

8 7 6

G17 g8 g7 g6

KRM17 y8 y7 y6

Z
/

17 z17 z16 ?

Table 21: Z17

• R16[31] = 0. The situation is described in Tables 22 and 23.

31 30

R15 0 b30

Z
/

16 z31 z30

R16 0 ?

Table 22: R16,31 = 0

26 25 24

R12 1 1 1
G16 1 0 1
M1 m26 m25 m24

K16 1 1 0

Z16 z31 z30 ?

Table 23: Z16

If z31 = z30, then the condition can be satisfied by setting b30 = z30. If
z31 6= z30, then changing of z30 can but don’t have to help us. Problem is
with the carry bit τ29 in the sum R16 +Z

/

16. That is why we need to change
Z

/

16,31−30. There are no free bits in R12[26 − 24] and G16[26 − 24] and we
need to change bits in M1[26− 24]. It holds for a message word M1

M1 = (R1 −R0)
≪(20) − (F (R0, R−1, R−2) + R−3 + K1).

The change in M1[26 − 24] can by done by the change of R1[4], R0[4] or in
some cases in R0[24] (it depends on R−1[24] and R−2[24]).

26

• R17[31] = 0 & R17[29] = R16[29]. We are fulfilling these two conditions
at once. The situation is similar to the situation of satisfying R17[17] =
1. According to bits R16[31 − 26] we find out how we need to arrange
Z

/

17[31 − 27]. Then we change bits in G17[22 − 18] to obtain the required
bits Z17[22−18]. We set bits R14[22−18] = (0, 0, 0, 0, 0) and R15[22−18] =
(g22, g21, g20, g19, g18).

31 30 29 28

R16 0 b30 b29 b28

Z
/

17 z31 z29 z29 z28

R17 0 x30 x29 x28

Table 24: R17[31] = 0

22 21 20 19 18

G16 g22 g21 g20 g19 g18

KRM16 y22 y21 y20 y19 y18

Z17 z31 z29 z29 z28 ?

Table 25: Z17

3.2.2 Step 4. of Algorithm 2.

We are generating a new collision candidate for the second block and we
are trying to satisfy the condition R18[31] = 0 in this step. We know that
changing of bits in R7, . . . , R11 will not affect the equations for M1 and M6.
The registers R16 and R17 are computed from R12, . . . , R15,M1 and from
R13, . . . , R16,M6. That means R16 and R17 will not change as well.

The computation of R18[31] is described in Tables 26 and 27. The change
of bit R14[17] will cause the change of Z

/

18[31] and the change of Z
/

18[31] will
cause the change of R18[31] what was our goal.

31 30

R17 0 b30

Z
/

18 z31 z30

R18 0 ?

Table 26: R18,31 = 0

17 16 15

R14 a17 0 0
KGM18 y17 y16 y15

Z18 z31 z30 ?

Table 27: Z18

Now we can see why we calculated the register R′
17 in step [3.b]. We

wanted to be sure that changing of R14[17] will not change the conditions
for R16 and R17, but it will change R18[31].

R16 = R15 + (G(R15,R14, R13) + R12 + M1 + K16)
≪5.

The function G(R15, R
′
14, R13) will not change because the bit R13[17] = 1.

That means R16 will not change as well.

R′
17 = R16 + (G(R16, R15, R

′
14) + R13 + M6 + K17)

≪9.

We don’t know how the register R′
17 will change. To ensure that the pre-

scribed conditions for R′
17 will not change we did the calculation of R′

17 in

27

step 3.c of Algorithm 2. We want to note that R′
17 will be satisfying the pre-

scribed conditions for R17 with very high probability. The change in R14[17]
would have to change G(R16, R15,R14) and then the carry in Z

/

17 would
have to change bits Z

/

17[26− 29] to change the condition R17[29] = R16[29].
The verifying of the condition R18[17] will cause that in average we

will go to the verification procedure (Step 5.d) after the calculation of
4 MD5 steps (2x M11 and 2x R18). Probability that the condition Z

/

18[17−
3] 6= (1, 1, . . . , 1) is not satisfied is 2−15 and can be neglected.

28

4 Klima’s and Stevens’ Algorithms

Most recently two new algorithms for collision attack on MD5 were pub-
lished. The first one was published by Marc Stevens [8], the second one
by Vlastimil Klima [9]. First we will present the Stevens’ algorithm. The
pseudo code is slightly different from Stevens’ presentation in [8] but corre-
sponds more exactly to the source code published by Stevens in [8] Appendix
B. We must note that the original description is probably better for under-
standing and the changes we made are minor. On the other hand the changes
improve the running time of the algorithm. We also try to give an overview
of the Klima’s algorithm. The computational complexity of the algorithms
will be calculated in the next section.

Both Stevens and Klima use different indexing for registers. The initial
vector IV occupies the registers Q−3,Q−2,Q−1,Q0 and the MD5-compression
function then proceeds with calculating the registers Q1, . . . Q64. To empha-
size the different indexing of registers we will use the letter Q when the
registers are counted from −3 to 64 and the letter R when they are counted
from −4 to 63.

4.1 Stevens’ Algorithm

Notation used in [8] is following

Qi = Ri−1, 1 ≤ i ≤ 64,

mi = Mi, 0 ≤ i ≤ 15,

Ti = Zi, 0 ≤ i ≤ 63.

A new collision candidate in Algorithm 3 is computed in Step 4, where
registers Q9, Q10 are changed. Then a message m10 is calculated and the
verification starts in Step 4.(b). Stevens’ Block 2 search algorithm [8] (Sec-
tion 6) differs from the Block 1 search algorithm only in Step 3 where the
loop is repeated until the registers Q17, . . . , Q21 fulfill the conditions. (In
the Block 1 search algorithm Q17 fullfills the conditions immediately.) This
change will extend the duration of Step 3. But because this step is computed
only once for 215 collision candidates, it will not extend the duration of the
whole algorithm remarkably.

29

Algorithm 3 Stevens’ Block 1 search algorithm

1: Choose Q1, Q3, . . . , Q16 fulfilling conditions;
2: Calculate m0,m6, . . . ,m15;
3: Loop until Q18, . . . , Q21 are fulfilling conditions:

(a) Choose Q17 fulfilling conditions;

(b) Calculate m1 from Q16, Q15, Q14, Q13, Q12;

(c) Calculate Q2 and m2,m3,m4,m5;

(d) Calculate Q18, . . . , Q21;

4: Loop over all possible Q9, Q10 satisfying conditions such that m11 does
not change:

(a) Calculate m10;

(b) Calculate Q22, Q23, Q24,m8,m9,m12,m13, Q25 . . . , Q64;

(c) Verify conditions for Q22, . . . , Q64, T22, T34 and the iv-conditions
for the next block. Stop searching if all conditions are satisfied
and a near-collision is verified.

5: Start again at step 1.

4.2 Klima’s Algorithm

In the paper “Tunnels in Hash Functions: MD5 Collisions Within a Minute”
[9] a new method of tunneling is explained. The paper was published in
March 2006 in the time of finishing of this text, but we try to present the
method by using our terminology. Klima noticed that the method of multi-
message modifications as suggested by Wang et al. and improved in this
thesis has some limits. Multi-message modifications can help to satisfy some
of the conditions for Ri, i ≥ 16, but it is difficult to satisfy all conditions
up to R23. He asked himself the following: “Suppose we can find a collision
candidate satisfying the conditions up to register R23. Can we change some
bits in registers Ri, i = 0, . . . 15, and calculate a new collision candidate
that will satisfy the conditions for R16, . . . , R23?” The answer is “yes”. He
specified several collections of bits in R0−R19 that have the property that a
change to the bits does not influence (with high probability) the prescribed
conditions for the registers R16, . . . , R23. He calls these collections of bits
tunnels. According to the numbers of changes that can be done in the tunnel
he defines the strength of the tunnel. The tunnel of strength n can create 2n

of different collision candidates satisfying all the conditions for R16, . . . , R23.
Different tunnels can be composed. If we can obtain 2r of collision candidates

30

using a tunnel of strength r and then we apply another tunnel of strength
s then we obtain together 2r+s of collision candidates. He further describes
different types of tunnels (Section 3). A probabilistic tunnel is a tunnel
that will create a new collision candidate satisfying the conditions for all
Ri, i ≤ 23, with probability of success p. The probability p is called the
probability of the tunnel. A deterministic tunnel is a tunnel that will create
a new collision candidate satisfying the conditions for all Ri, i ≤ 23, with the
probability 1. A dynamic tunnel is a tunnel in which bits can be changed
according to the values of bits in the other registers. We will add a new
parameter called the price of the tunnel to the description of the tunnels.
This parameter will tell us how many calculations of MD5 steps need to be
done to create a new collision candidate in this tunnel. Suppose that T is a
tunnel and the number of MD5 steps that are computed in the calculation
of a new collision candidate is n. The price of the tunnel T is an average
number of MD5 steps needed to create a collision candidate satisfying the
conditions for all Ri, i ≤ 23. In the case of some tunnels of probability p, we
have c = p−1n. In the case of more complicated tunnels, some of the registers
affected by the change in the tunnel can be calculated only after we have
checked that the change in the tunnel has generated a new collision candidate
satisfying the prescribed conditions for all Ri, i ≤ 23. In this case the price
of the tunnel is c = p−1n1 + n2, where n1 is the number of calculations of
MD5 steps that need to be done to check whether the change in tunnels has
generated a new collision candidate satisfying the prescribed conditions for
all Ri, i ≤ 23, and n2 is the number of calculations of MD5 steps needed
to be done because of the change in the tunnel.

We summarize the information about the tunnels given in Section 3 of
[9] in the following table, where we named the particular tunnels by Ti for
i = 1, . . . , 6. We must note that the numbers in this table are very roughly
estimated and further analysis is required. However, we will show the idea
of calculation of the complexity of the attack in the next section.

31

tunnel strength probability price changed words

T6 : Q9 3 1 3 M8,M9,M12

T5 : Q4 1 1 3 M3,M4,M7

T4 : Q14 8 1 8 M2,M3,M4, R23,M6

M7,M13,M14

T3 : Q10 2 1
2 4*2 + 3 M10, R21, R22, R23,

M9,M12,M13

T2 : Q13 > 10 1
3 3*7 + 3 M5, R20, R21,M15, R22,

M4, R23,M1,M2,M3

T1 : Q20 > 3 roughly 1
7 7*6 + 3 M5, R20, R21, R22,M4,

R23,M1,M2,M3

Table 28: Tunnels in the first block

32

Algorithm 4 Klima’s algorithm

1: Loop until the conditions for R16, . . . , R23 are fulfilled
2: Loop over all possible changes in T1

3: Generate a new candidate for collision
4: Verify the candidate
5: Loop over all possible changes in T2.
6: Generate a new candidate for collision
7: Verify the candidate
8: Loop over all possible changes in T3

9: Generate a new candidate for collision
10: Verify the candidate
11: Loop over all possible changes in T4

12: Generate a new candidate for collision
13: Verify the candidate
14: Loop over all possible changes in T5

15: Generate a new candidate for collision
16: Verify the candidate
17: Loop over all possible changes in T6

18: Generate a new candidate for collision
19: Verify the candidate
20: End of loop T6

21: End of loop T5

22: End of loop T4

23: End of loop T3

24: End of loop T2

25: End of loop T1

33

5 Algorithm Complexity

We enumerate the prescribed conditions for registers R20, . . . , R63 in first
block and we denote by Aj the event that condition number j is true as in
Table 29. For the second block we denote by Bj the event that condition
number j is true as it is in Table 30. For the conditions on more than one
bit in Zi we used symbol 1∗, that means that all specified bits are 1, and 0∗

to mean that all specified bits are 0.

A1 : R20[17] = 0 A2 : R20[31] = 0 A3 : R21[31] = 0

A4 : Z22[17] = 0 A5 : R22[31] = 0 A6 : R23[31] = 0

A7 : Z34[15] = 0 A8 : R47[31] = R45[31] A9 : R48[31] = R46[31]

A10 : R49[31] 6= R47[31] A11 : R50[31] = R48[31] A12 : R51[31] = R49[31]

A13 : R52[31] = R50[31] A14 : R53[31] = R51[31] A15 : R54[31] = R52[31]

A16 : R55[31] = R53[31] A17 : R56[31] = R54[31] A18 : R57[31] = R55[31]

A19 : R58[31] = R56[31] A20 : R59[25] = 0 A21 : R59[31] 6= R57[31]

A22 : R60[25] = 1 A23 : R60[31] = R58[31] A24 : R61[25] = 0

A25 : R61[31] = R59[31] A26 : R62[25] = 0 A27 : R62[31] = R60[31]

A28 : IV 1
3 [25] = 0 A29 : IV 1

2 [25] = 1 A30 : IV 1
2 [26] = 0

A31 : IV 1
2 [31] = IV 1

3 [31] A32 : IV 1
1 [5] = 0 A33 : IV 1

1 [25] = 0

A34 : IV 1
1 [26] = 0 A35 : IV 1

1 [31] = IV 1
2 [31]

Table 29: Conditions block 1

5.1 Conditions on the Initial Vector

The influence of the initial vector value IV 0 on the running time of collision
search algorithm was first described by Stevens in [8] (section 5). There are
8 conditions for the initial vector of the second block IV 1. The initial vector
IV 0 depends on the initial vector IV 0 as follows

IV 1
0 = IV 0

0 + R60,

IV 1
3 = IV 0

3 + R61,

IV 1
2 = IV 0

2 + R62,

IV 1
1 = IV 0

1 + R63.

Since the conditions IV 1
3 [25] = 0 and IV 1

2 [25] = 1 are being verified when
the conditions for R61[25], R62[25] are satisfied, the conditions IV 1

3 [25] = 0

34

B1 : Z16[24− 26] 6= 1∗ B2 : R16[3] = R15[3] B3 : R16[15] = R15[15]

B4 : R16[17] = 0 B5 : R16[31] = 0 B6 : R17[17] = 1

B7 : R17[29] = R16[29] B8 : R17[31] = 0 B9 : Z18[17 − 3] 6= 1∗

B10 : R18[17] = 0 B11 : R18[31] = 0 B12 : Z19[31− 29] 6= 0∗

B13 : R19[31] = 0 B14 : R20[17] = R19[17] B15 : R20[31] = 0

B16 : R21[31] = 0 B17 : Z22[17] = 0 B18 : R22[31] = 0

B19 : R23[31] = 0 B20 : Z34[15] = 0 B21 : R47[31] = R45[31]

B22 : R48[31] = R46[31] B23 : R49[31] 6= R47[31] B24 : R50[31] = R48[31]

B25 : R51[31] = R49[31] B26 : R52[31] = R50[31] B27 : R53[31] = R51[31]

B28 : R54[31] = R52[31] B29 : R55[31] = R53[31] B30 : R56[31] = R54[31]

B31 : R57[31] = R55[31] B32 : R58[31] = R56[31] B33 : R59[25] = 0

B34 : R59[31] 6= R57[31] B35 : R60[25] = 1 B36 : R60[31] = R58[31]

B37 : Z61[21 − 15] 6= 1∗ B38 : R61[25] = 1 B39 : R61[31] = R59[31]

B40 : R62[25] = 1 B41 : R62[31] = R60[31] B42 : R63[25] = 1

Table 30: Conditions block 2

and IV 1
2 [25] = 1 depend on the values of IV 0

3 and IV 0
2 . Stevens proposed

to add conditions IV 0
3 [25] = IV 0

3 [24] and IV 0
2 [25] 6= IV 0

2 [24]. We present
the calculation of probability of the event A28 : IV 1

3 [25] = 0 given that all
events Ai, i < 28, have already occurred and the calculation of probability
of the event A29 : IV 1

2 [25] = 1 given that all events Ai, i < 28, have already
occurred. The calculation is based on the following proposition.

Proposition 5.1. The sum of two registers and the carry bit.

i. Let A = [a31, a30, . . . , a0]2 and B = [b31, b30, . . . , b0]2 be a random 32-

bit long registers. Bits ai, 0 ≤ i ≤ 31, and bi 0 ≤ i ≤ 31 are inde-

pendent and chosen from the uniform distribution. Denote by p̃i the

probability that τi = 0 in the sum A+B and denote by q̃i = 1− p̃i, the

probability that τi = 1 in the sum A + B. Then

p̃i =





i−1
∑

j=0

(

1

2

)j (1

4

)



+

(

1

2

)i(3

4

)

=
1

2
+

(

1

2

)i+2

(18)

q̃i =





i
∑

j=0

(

1

2

)j (1

4

)



 =
1

2
−

(

1

2

)i+2

(19)

ii. Let A = [a31, a30, . . . , a0]2 be given in advance and B = [b31, b30, . . . , b0]2
be a random 32-bit long register, where bi 0 ≤ i ≤ 31 are independent,

35

and chosen from the uniform distribution. Denote by p̃i the probability

that τi = 0 in the sum A + B and denote by q̃i = 1− p̃i the probability

that τi = 1 in the sum A + B. Then

p̃i =





i
∑

j=0

(1− ai−j)

(

1

2

)j+1


+

(

1

2

)i+1

, (20)

q̃i =
i
∑

j=0

ai−j

(

1

2

)j+1

. (21)

Proof.

i. We prove the formula for p̃i by the mathematical induction on i. The
formula for q̃i then follows For i = 0, p̃0 = 3

4 . τ0 = 1 only if a0 = b0 = 1,
and τ0 = 0 in the other 3 cases.

Suppose that k > 0 and the proposition holds for i = k− 1. For i = k,
τk = 0 if ak = bk = 0 or if ak 6= bk and τk−1 = 0. We can write

p̃k =
1

4
+

1

2
p̃k−1

=
1

4
+

1

2









k−2
∑

j=0

(

1

2

)j (1

4

)



+

(

1

2

)k−1(3

4

)





=





k−1
∑

j=0

(

1

2

)j (1

4

)



+

(

1

2

)k (3

4

)

The second equality in (18) and (19) are obvious.

ii. For i = 0

for a0 = 0, p̃0 = 1,

for a0 = 1, p̃0 = P (b0 = 0) =
1

2
.

Suppose that k > 0 and the proposition (ii) holds for i = k − 1. Then

for ak = 0, p̃k = P (bk = 0) + P (bk = 1 | τi−1 = 0)

= P (bk = 0) + P (bk = 1)P (τi−1 = 0)

=
1

2
+

1

2
p̃k−1,

for ak = 1, p̃k = P (bk = 0 | τk−1 = 0)

=
1

2
p̃k−1.

36

We used the fact that the bits bi, i = 0, . . . , 31 are mutually indepen-
dent. Then

p̃k =
1

2
(1− ak) +

1

2
p̃k−1

=
1

2
(1− ak) +

(

1

2

)k+1

+

k−1
∑

j=0

(1− ak−1−j)

(

1

2

)j+2

=





k
∑

j=0

(1− ak−j)

(

1

2

)j+1


+

(

1

2

)k+1

,

where we used the induction assumption for p̃k−1. The formula for q̃i

can be proved similarly.

It follows from Proposition 5.1.ii.:

p28 = P (A28| ∩i<28 Ai)

=



















































p̃24 =

(

24
∑

j=0
(1− d24−j)

(

1
2

)j+1

)

+
(

1
2

)24+1
,

for IV 0
1,25 = 0, (τ24 = 0),

q24 =
24
∑

j=0
d24−j

(

1
2

)j+1
,

for IV 0
1,25 = 1, (τ24 = 1),

(22)

where IV 0
3 = [d31, d30, . . . , d0]2, and τ24 is the carry from the position 24 in

the sum R61 + IV 0
3 .

The value of p29 can be calculated as follows

p29 = P (A29| ∩i<29 Ai)

=



















































q24 =
24
∑

j=0
d24−j

(

1
2

)j+1
,

for IV 0
2,25 = 0, (τ24 = 1),

p24 =

(

24
∑

j=0
(1− c24−j)

(

1
2

)j+1

)

+
(

1
2

)24+1
,

for IV 0
2,25 = 1, (τ24 = 0),

(23)

where IV 0
2 = [c31, c30, . . . , c0]2, and τ24 is the carry from the position 24 in

the sum R62 + IV 0
2 . For the original initial vector we get p28

.
= 0.9017 and

p29
.
= 0.3650.

37

Remark 5.2. Stevens in [8] (Section 5) proposed to add conditions IV 0
3 [25] =

IV 0
3 [24] and IV 0

2 [25] 6= IV 0
2 [24] on the initial vector of the attack. These

conditions will cause that p28 ≥
1
2 and p29 ≥

1
2 . If the rest of the bits in the

IV 0
3 and IV 0

2 are chosen randomly from the uniform distribution, then the
average value of p28 and p29 should be close to the value 0.75.

5.2 The Calculation of Complexity

In this section we present the calculation of computational complexity of
the three presented algorithms independent from such values as CPU perfor-
mance or programming language in which the algorithms were implemented.

Basic unit in which we measure complexity is computation of one MD5
step from definition 1.1. This computation consists of four additions mod-
ulo 232, one bitwise boolean function at registers of length of 32 bits and
one left shift rotation:

Ri = Ri−1 + (fi(Ri−1, Ri−2, Ri−3) + Ri−4 + Ki + Wi)
≪si .

The computation of Mi,

Mi = (Ri −Ri−1)
≪(32−si) − (fi(Ri−1, Ri−2, Ri−3) + Ri−4 + Ki),

has the same complexity as 1 MD5 step. Computation of the whole com-
pression function hMD5 has complexity 26MD5 steps.

We will ask three different questions for all the algorithms.

1. What is the average number of collision candidates that need to be
verified in order to find one collision?

2. What is the average price for creating one candidate for verification,
i.e. what is the average number of MD5 steps that are computed in
generating one candidate for collision?

3. What is the average price for one verification procedure i.e. what is
the expected value of the number of MD5 steps being computed in
the procedure of verification?

The following consideration will give us the answer to the first question.
Suppose a random experiment has two possible outcomes, success with prob-
ability p and failure with probability q = 1− p. The experiment is repeated
until a success happens. The number of experiments needed until the first
success occurs is a random variable X with the probability density function

f(x) = P (X = x) = q(x−1)p.

38

The expected value and the variance of a random variable X that has a
geometric distribution with parameter p are

E(X) =
1

p
, (24)

var(X) =
1− p

p2
.

Proofs of these facts can be found in every basic course of the probability
theory. An interpretation of the expected value is that we need in average
6 tries to throw a 6 on a die. The same fact will be used in calculation of
the number of collision candidates that need to be verified. We need to find
out the parameter p i.e. probability that all conditions for the registers Ri

in the verification procedure are true. Then

p = P (A1 ∩ · · · ∩A35) = P (A35|A1 ∩ · · · ∩A34)P (A1 ∩ · · · ∩A34)

= P (A35| ∩i<35 Ai) P (A34| ∩i<34 Ai) P (∩i<34Ai)

=
35
∏

j=1

P (Aj| ∩i<j Ai)

For j = 2, . . . 35, we denote pj = P (Aj | ∩i<j Ai) and p1 = (P (A1)).
That means

p =
35
∏

j=1

pi.

Similarly we will denote pj for the events Bj, j = 1, . . . , 42 as P (Bj | ∩i<j Bi)
in the second block.

Proposition 5.3. We denote by C the random variable specifying the num-

ber of collision candidates needed to be verified until a colliding block is

found. Then for the first colliding block we have

i. E(Cs) = 231 1
p28

1
p29

, for Stevens’ algorithm,

ii. E(Ck) = 227 1
p28

1
p29

, for Klima’s algorithm,

iii. E(C) = 229 1
p4

1
p28

1
p29

, for our algorithm,

where the values of p28 and p29 are given in section 5.1 and they depend on

the initial vector of the first block, the values of p3, . . . , p6 in the Stevens’

algorithm are estimated as 1
2 , the value p4 of our algorithm is given in sub-

section 3.1.3, where it is also explained why the probability p4 is 0.65. For

the second colliding block holds

i. 128
127226 for Stevens’ algorithm.

39

ii. 128
127

8
7229 for our algorithm.

Proof. The random variable C has geometric distribution. Then from the
description of the algorithms for the first block we can write

ps =
35
∏

j=3

pj

pk =

35
∏

j=7

pj

po =

35
∏

j=1

pj.

For the first block we will make assumption that the value of pj, for j =
7, . . . , 27, 30, . . . , 35, is 1

2 , because the occurrence of the events Ai, i < j does
not have any influence on the occurrence of the event Aj and the probability
that condition is satisfied is 1

2 . We have estimated the value of p3, . . . , p6

in the Stevens’ algorithm at 1
2 . The calculations of p28 and p29 are given in

Section 5.1. Proposition then follows from (24). Propositions for the second
block can be calculated in the same way. We note that the constant 127

128 is
from the probability of the event B37 given that all events Bi, for i < 29
have already occurred and the constant 8

7 is from the probability of the event
B12 given that all events Bi, for i < 12 have already occurred.

For the original IV 0, p−1
28 p−1

29
.
= 3.0384. That means the average numbers

of collision candidates should be close to (3.0384)231 for Stevens’ algorithm,
(3.0384)227 for Klima’s algorithm, (4.6745)229 for our algorithm. Conditions
on the IV 0 added by Stevens will in average change p−1

28 p−1
29

.
= 0.75−2 .

= 1.77,
what should speed up the attacks.

Proposition 5.4. We denote by G the random variable specifying the price

for generating of one collision candidate for the first colliding blocks. Then

for generating of the first block holds

i.

E(Gs) = 1 +
ks1

215

.
= 1.03 MD5 steps

where ks1 is the average number of MD5 steps being computed in steps

1.-3. of Algorithm 3,

ii.

E(Gk) =

c0 +
6
∑

i=1
2

P

j<i sj (2si − 1)ci

2s1+s2+s3+s4+s5+s6

.
= 3.314 MD5 steps

where c0 is the price for finding the first collision candidate satisfying

the prescribed conditions for Ri, i ≤ 23, si is the strength of the tunnel

i and ci is the price of the tunnel i, for i = 1, . . . , 6.

40

iii.

E(Go)
.
= 8.02 MD5 steps

for our algorithm.

For generating of the second block holds

i.

E(Gs) = 1 +
ks2

215

.
= 2 MD5 steps,

where ks2 is the average number of MD5 steps being computed in steps

1.-3. of Stevens’ algorithm for the second block.

ii.

E(Go)
.
= 4 MD5 steps

for our algorithm.

Proof. The computation of the average price for our Algorithm 1 is given at
the end of subsection 3.1.2. The average price for generating the candidate
our Algorithm 2 follows from the explanation of the algorithm in subsection
3.2.2.

For Stevens’ algorithms the value follow from the construction of the
algorithms. The constant ks1 and ks1 can be estimated according to the
implementation of step 3 in the algorithms. For the first block there are
9 prescribed conditions for R17, . . . , R20 to be satisfied and we can suppose
that ks1 < 210. For the second block there are 14 prescribed conditions and
we can suppose that ks2 < 215.

We used the following consideration for the Klima’s algorithm with the
tunnels. In the beginning we must generate the first collision candidate
satisfying all the prescribed conditions until R23 for the price c0. Then we
clone the first collision candidate in the first tunnel into the 2s1 collision
candidates. That means we need to do 2s1 − 1 computations of the new
collision candidates for the price c1. Then we clone the 2s1 candidates into
the 2s1+s2 candidates in the tunnel 2. That means we need to do 2s1(2s2−1)
computations for the price c2. Applying this to all tunnels we calculate
the total price for creating of 2s1+···+s6 candidates that are satisfying the
prescribed conditions for the registers Ri, i ≤ 23. We get the number 3.314
by substituting the values of si and ci from the Table 28.

Proposition 5.5. We denote by V the random variable specifying the ex-

pected price for the verification of one collision candidate. Then for the

algorithms for the first block holds

i. E(Vs)
.
= 2.9999 MD5 steps for Stevens’ algorithm,

ii. E(Vk)
.
= 16.9999 MD5 steps for Klima’s algorithm,

41

iii. E(Vo)
.
= 4.5750 MD5 steps for our algorithm.

For the algorithms for the second block holds

i. E(Vs)
.
= 2.9999 MD5 steps for Stevens’ algorithm,

ii. E(Vo) = 1.9440 MD5 steps for our algorithm.

Proof. We can count the number of MD5 steps from the beginning of the
verification procedure to the point when particular condition is being verified
and calculate the probability that the verification procedure will end when
the condition j is not satisfied. This probability can be calculated from

pxi
=



1−
∏

j=i

(pj)









∏

j<i

pj



 ,

where the first product goes over all conditions for step i and the second
product goes over all conditions for steps j < i. The values are for both
blocks are given in Appendix B in Tables 35 and 36. Now we can calculate
the expected value of the random variable V given by Table 35 and 36 as

E(V) =
∑

i

xipxi
,

where i goes over all steps in the particular verification procedure.

Now the average running time of the algorithms until they find a colliding
block for the original IV can be calculated as

E(C) (E(G) + E(V)) ,

where C, P and V are the random variables defined in Propositions 5.3, 5.4,
5.5.

For the first colliding block and the original initial vector the average
running time is

i. (3.0384)231(1.032 + 2.999)
.
= 24.5010(230) MD5 steps for Stevens’

algorithm,

ii. (3.0384)227(3.314 + 16.999)
.
= 7.7153(230) MD5 steps for Klima’s al-

gorithm,

iii. (4.6745)229(8.02+4.5750)
.
= 29.437(230) MD5 steps for our algorithm.

42

For the first colliding block and given initial vector we have

i. 8.0638(p28p29)
−1230 MD5 steps for Stevens’ algorithm,

ii. 2.5392(p28p29)
−1230 MD5 steps for Klima’s algorithm,

iii. 9.6884(p28p29)
−1230 MD5 steps for our algorithm, where the values

p28 and p29 depends on the given initial vector and formulas for their
calculation are given in Section 5.1.

We did not calculate the complexity of the Klima’s algorithm with tunnels
for the second colliding block, but it can be calculated similarly than for the
first block algorithm. For Stevens’ and our algorithms we have

i. 128
127226(2 + 2.999)

.
= 0.3149(230) MD5 steps for Stevens’ algorithm,

ii. 128
127

8
7229(4 + 1.9440)

.
= 3.4233(230) MD5 steps for our algorithm.

Now we can estimate that Klima’s algorithm for the first block is the-
oretically about 3.17 times faster than Stevens’ algorithm and Stevens’ al-
gorithm is theoretically only slightly faster than our algorithm for the first
block. The Stevens’ algorithm for the second block is about eleven times
faster than our algorithm for the second block. If we compare the complex-
ity of our algorithms for the first and the second block, then the complexity
of the algorithm for the first block is about 8 times higher than the com-
plexity of the algorithm for the second block. For Stevens’ algorithms is
the complexity of the algorithm for the first block approximately 93 times
higher than the complexity of the algorithms for the second block. It says
that the complexity of algorithms for the first block is more important for
the complexity of finding two colliding messages.

43

6 Results

We implemented our proposed algorithm for the first block as described in
Section 3. First we measured the running time of 226 full MD5 compression
functions which is equivalent to 232 MD5 steps of our implementation on
AMD Athlon XP1800+ and we obtained that 232 MD5 steps

.
= 58.12 sec.

From this we can calculate that 29.437(230) MD5 steps
.
= 427.719 sec. Then

we ran 239 tests of the algorithm for the first block and original IV and we
got the average running time 456.83 sec. This test confirmed that our theo-
retical calculation is quite close. Stevens in Section 6 of [8] gives his results
for the average number of MD5 steps for his first block and recommended
IV is 233.6. If we suppose that his recommendation gives the average value
of probabilities from Section 5.1 p28 = p29 = 0.75, then according to our
calculation of complexity in Section 5.2. the average running time should
be

(0.75)−2(1.032 + 2.999)231 .
= (7.168)231 .

= 233.84.

That also confirms our theoretical calculations of the complexity, based not
on the measuring.

Our implementation of the algorithm for the second block differs from
the proposed algorithm in Section 3, but allows us to find the second block
in 171 sec in average.

Remark 6.1. Some other statistics of the Klima’s and Stevens’ implementa-
tion can be found at http://crypto-world.info/info/result.pdf. The statistics
confirm our theoretical calculation that Klima’s algorithm is approximately
three times faster than the Stevens’.

44

Conclusion

Our presented algorithm using multi-message modification allows us to find
collisions in MD5 in only minutes on a common personal computer. We com-
pared computional complexity of our algorithm with algorithms of Klima
and Stevens. The new method of tunneling seems to be very efficient com-
pared to the multi-message modification method. We have also shown the
impact of the initial vector value to the running time of the algorithms.

45

References

[1] Ron Rivest The MD5 Message-Digest Algorithm, Request for Com-
ments: 1321, April 1992, http://rfc.net/rfc1321.html.

[2] X. Wang, X. Lai, D. Feng, and H. Yu. Collisions for hash functions

MD4, MD5, HAVAL-128 and RIPEMD, presented at the rump session
of CRYPTO 2004, August 2004, http://eprint.iacr.org/2004/199.

[3] Xiaoyun Wang, Hongbo Yu. How to break MD5 and other

hash functions, presented at EUROCRYPT 2005, 2004,
http://www.infosec.sdu.edu.cn/paper/md5-attack.pdf.

[4] Philip Hawkes, Michael Paddon, Gregory G. Rose Musings on the Wang

et al. MD5 Collision, Cryptology ePrint Archive, Report 2004/264,
http://eprint.iacr.org/2004/264.pdf

[5] Vlastimil Klima Finding MD5 Collisions on a Notebook PC

Using Multi-message Modifications, Cryptology ePrint Archive,
http://eprint.iacr.org/2005/102.pdf

[6] Jun Yajima, Takeshi Shimoyama Wangs sufficient conditions of MD5

are not sufficient, Cryptology ePrint Archive: Report 263/2005,
http://eprint.iacr.org/2005/263.

[7] Jie Liang, Xuejia Lai Improved collision attack on hash func-

tion MD5, Cryptology ePrint Archive: Report 425/2005,
http://eprint.iacr.org/2005/425.

[8] Marc Stevens Fast Collision Attack on MD5, Cryptology ePrint
Archive: Report 104/2006, http://eprint.iacr.org/2006/104.

[9] Vlastimil Klima Tunnels in Hash Functions: MD5 Collisions

Within a Minute, Cryptology ePrint Archive: Report 105/2006,
http://eprint.iacr.org/2006/105.

46

A Prescribed Conditions

i Ri[31] Ri[0]

0

1

20...0... .0......

3 1...0... 0^^^1^^^ ^^^^1^^^ ^011....

4 1000100. 01000000 00000000 0010.1.1

5 0000001^ 01111111 10111100 0100^0^1

6 00000011 11111110 11111000 00100000

7 00000001 1..10001 0.0.0101 01000000

8 11111011 ...10000 0.1^1111 00111101

9 0111.... 0..11111 1.01...0 01....00

10 0010....0001 1.00...0 11....10

11 000...^^1000 0001...1 0.......

12 01....011111 111....0 0...1...

13 000...001011 111....1 1...1...

14 011...01 10...... ...0....

15 001.....

Table 31: Prescribed conditions for R0, . . . , R15, block 1

Notation:

Ri[j] =















’.’ if there is no condition on the bit,
’0’, ’1’ if Ri[j]must be the value 0 or 1,

’^’ if Ri[j]must be equal to Ri−1[j],
’!’ if Ri[j]must not be equal to Ri−1[j].

47

i Ri[31] Ri[0] Zi

16 01......0. ^.......^...

17 0.^.....1.

18 0.......0. Z18[17− 3] 6= 1∗

19 0....... Z19[31 − 29] 6= 0∗

20 0.......^.

21 0.......

22 0....... Z22[17] = 0
23 1.......

24-44 Z34[15] = 0
45 I.......

46 J.......

47 I.......

48 J.......

49 K.......

50 J.......

51 K.......

52 J.......

53 K.......

54 J.......

55 K.......

56 J.......

57 K.......

58 J.......

59 I.....0.

60 J.....1.

61 I.....0.

62 J.....0.

63

IV 1
m,0

IV 1
m,30.

IV 1
m,2 ^.....01.

IV 1
m,1 ^.....00.0.....

Table 32: Prescribed conditions for R16, . . . , R63 and IV 1
m, block 1

I, J,K ∈ {0, 1}, I 6= K

48

i Ri[31] Ri[0]

-30.

-2 ^.....01.

-1 ^.....00.0.....

0 !...010. ..1....10... ..0.....

1 ^^^^010. ..0^^^^1 0..^1... ^^0..00.

2 ^011111. ..011111 1..01..1 011^^111

3 ^011101. ..000100 ...00^^0 00010001

4 !10010.. ..101111 ...01110 01010000

5 ^..0010. ..10..10 .1.01100 01010110

6 !..1011^ ^.00..01 ^0.111110 00.....1

7 ^..00100 0.11..10 1.....11 111...^0

8 ^..11100 0.....01 0..^..01 110...01

9 ^....111 1....011 1..0..11 11....00

10 ^.......^101 1^^0..11 11....11

11 ^^^^^^^^1000 0001.... 1.......

12 !0111111 0...1111 111..... 0...1...

13 ^1000000 1...1011 111..... 1...1...

14 011111010 00......0...

15 0.10....1

Table 33: Prescribed Conditions for R−3, . . . , R15, block 2

49

i Ri[31] Ri[0] Zi

16 0.......0. ^.......^... Z16[24− 26] 6= 1∗

17 0.^.....1.

18 0.......0. Z18[17− 3] 6= 1∗

19 0....... Z19[31− 29] 6= 0∗

20 0.......^.

21 0.......

22 0....... Z22[17] = 0
23 1.......

24-44 Z34[15] = 0
45 I.......

46 J.......

47 I.......

48 J.......

49 K.......

50 J.......

51 K.......

52 J.......

53 K.......

54 J.......

55 K.......

56 J.......

57 K.......

58 J.......

59 I.....0.

60 J.....1.

61 I.....1. Z61[21− 15] 6= 1∗

62 J.....1.

631.

Table 34: Prescribed conditions for R16, . . . , R63 block 2
I, J,K ∈ {0, 1}, I 6= K

50

B Procedure of Verification

Our Alg. Stevens’ Alg. Klima’s Alg.

i ni pj xi pxi
xi pxi

xi pxi

21 1 2−1∗ 1 (2−1)

22 2 p∗4, 2−1 1 0.675 2 3(2−3)

23 1 2−1 3 0.65(2−2) 3 2−4

24 - 33 0 0 4− 13 0 4− 17 0 1− 9 0

34 1 2−1 14 0.65(2−3) 18 2−5 10 2−1

35 - 46 0 0 15− 26 0 19− 30 0 11− 22 0

47 1 2−1 27 0.65(2−4) 31 2−6 23 2−2

48 1 2−1 28 0.65(2−5) 32 2−7 24 2−3

49 1 2−1 29 0.65(2−6) 33 2−8 25 2−4

50 1 2−1 30 0.65(2−7) 34 2−9 26 2−5

51 1 2−1 31 0.65(2−8) 35 2−10 27 2−6

52 1 2−1 32 0.65(2−9) 36 2−11 28 2−7

53 1 2−1 33 0.65(2−10) 37 2−12 29 2−8

54 1 2−1 34 0.65(2−11) 38 2−13 30 2−9

55 1 2−1 35 0.65(2−12) 39 2−14 31 2−10

56 1 2−1 36 0.65(2−13) 40 2−15 32 2−11

57 1 2−1 37 0.65(2−14) 41 2−16 33 2−12

58 1 2−1 38 0.65(2−15) 42 2−17 34 2−13

59 2 2−1, 2−1 39 1.95(2−17) 43 3(2−19) 35 3(2−15)

60 2 2−1, 2−1 40 1.95(2−19) 44 3(2−21) 36 3(2−17)

61 2 2−1, 2−1 41 1.95(2−21) 45 3(2−23) 37 3(2−19)

62 2 2−1, 2−1 42 1.95(2−23) 46 3(2−25) 38 3(2−21)

63 0 0 43 0 47 0 39 0

IV 1 8 44 0.65(2−23) 48 2−25 40 2−21

Total 32 33 29

Table 35: The verification procedure block 1

*p4 = P (Z22[17] = 0) = 0.65 for our Algorithm 1. For Stevens’ Algo-
rithm is estimated as 0.5.

51

Our Alg. Stevens’ Alg. Klima’s Alg.

i ni pj xi pxi
xi pxi

xi pxi

19 1+1* 2−1∗, 2−1∗ 1 9(2−4)

20 2 2−1∗, 2−1∗ 2 21(2−6)

21 1 2−1∗ 4 7(2−7) 1 (2−1)

22 2 2−1∗, 2−1 6 21(2−9) 2 3(2−3)

23 1 2−1 7 7(2−10) 3 2−4

24 - 33 0 0 8− 23 0 4− 17 0 1− 9 0

34 1 2−1 24 7(2−11) 18 2−5 10 2−1

35 - 46 0 0 25− 36 0 19− 30 0 11− 22 0

47 1 2−1 37 7(2−12) 31 2−6 23 2−2

48 1 2−1 38 7(2−13) 32 2−7 24 2−3

49 1 2−1 39 7(2−14) 33 2−8 25 2−4

50 1 2−1 40 7(2−15) 34 2−9 26 2−5

51 1 2−1 41 7(2−16) 35 2−10 27 2−6

52 1 2−1 42 7(2−17) 36 2−11 28 2−7

53 1 2−1 43 7(2−18) 37 2−12 29 2−8

54 1 2−1 44 7(2−19) 38 2−13 30 2−9

55 1 2−1 45 7(2−20) 39 2−14 31 2−10

56 1 2−1 46 7(2−21) 40 2−15 32 2−11

57 1 2−1 47 7(2−22) 41 2−16 33 2−12

58 1 2−1 48 7(2−23) 42 2−17 34 2−13

59 2 2−1, 2−1 49 21(2−25) 43 3(2−19) 35 3(2−15)

60 2 2−1, 2−1 50 21(2−27) 44 3(2−21) 36 3(2−17)

61 2+1* 2−1, 2−1 51 25
32

7
227 45 25(2−27) 37 25(2−23)

62 2 2−1, 2−1 52 7
32

3
4

7
227 46 21(2−29) 38 21(2−25)

63 1 0 53 7
32

1
4

7
227 47 7(2−29) 39 7(2−25)

Total 29 + 2∗ 26 + 1∗ 22 + 1∗

Table 36: The verification procedure block 2

52

