
On Blue Midnight Wish Decomposition

Vlastimil Klima

v.klima@volny.cz

Independent Cryptologist - Consultant
Prague, Czech Republic

Danilo Gligoroski

danilog@item.ntnu.no

Department of Telematics
Norwegian University of Science and Technology

Trondheim, Norway

Abstract

Blue Midnight Wish is one of the 14 candidates in the second round of the NIST SHA-3 competition
[1]. In this paper we present a decomposition of the Blue Midnight Wish core functions, what gives
deeper look at the Blue Midnight Wish family of hash functions and a tool for their cryptanalysis. We
used this decomposition for better understanding the insights of Blue Midnight Wish functions and
to propose the tweak for the second round. We would like to encourage further cryptanalysis of Blue
Midnight Wish, as the quickest candidate in the second round.

Keywords: hash, SHA-3, Blue Midnight Wish.

1 Introduction

In this paper we describe a decomposition of the functions used in tweaked version of Blue Midnight
Wish, which was sent to the second round of the NIST SHA-3 competition [2]. It is better for the
reader to start reading the basic description in [2], because this paper in some sense extends it. Thus,
here we just repeat the necessary notations from the basic description and add some new notations of
the new variables of decomposed blocks. Then we describe complete decomposition of Blue Midnight
Wish into simple blocks. The notation and decomposition is written generally for all variants of Blue
Midnight Wish, because BMW224/384 are based on BMW256/512 and BMW256/512 differ only in
the length of the word w = 32/64, in some constants and shifts in the definitions of logical functions.
Therefore for the simplicity it suffices to talk simply of Blue Midnight Wish. When necessary, we will
use concrete values of constants and logical functions for BMW256. Otherwise the description and the
decomposition holds for all Blue Midnight Wish variants. The aim is to give the symbolic and simple
description, which would unveil and show the basic relations and thus help cryptanalysis. Moreover we
note several basic properties of used transformations.

2 Notations

The basic units in the description are mainly words of w bits. Note that for BMW256/512 we have
w = 32/64. The message block and the chaining values and other variables are usually vectors of 16
words. We will use capitals for these vectors and indexes for their words, for instance X = (X0, . . . , X15).

SantaCrypt 2009 1



Similarly for variables A, S, W , G, H, K, D. The small exception is notation Qa = (Q0, . . . , Q15) and
Qb = (Q16, . . . , Q31) for the first and second part of the quadruple pipe Q.

We denote by ROTL1(H) the rotation on words of the variable H = (H0, . . . ,H15) such that the words
as a whole are rotated one position to the left. Concretely, ROTL1(H) = (H1, H2, . . . ,H15, H0). Analo-
gously we define ROTL7(H) = (H7, H8, . . . ,H15, H0, H1, . . . ,H6).

We also use rotM to express another kind of rotation. It is defined as an ensemble of rotations of separate
words of M such that the i-th word of M (as a w-bit string) is rotated by i + 1 positions to the left. For
instance the word M0 is rotated left by 1 position, the word M1 is rotated left by 2 positions, and so
forth up to the the word M15 which is rotated to the left by 16 positions.

The width of the message block is the same as the length of chaining value and it is m = 16w bits.

3 Blue Midnight Wish description and decomposition

3.1 General design principles

Blue Midnight Wish is an iterative hash function based on a compression function. Padding and
preprocessing of the message is similar to that of SHA-1/2. The first noticeable difference from SHA-1/2
is in the width of the chaining value, which is twice as long as the final hash value. The size of the
message block is same as the size of the chaining value (double length). We can say that this is one of
the design principles that contribute to the Blue Midnight Wish speed. The second difference from
SHA-1/2 consists of an additional processing of the last chaining value once more by the compression
function. Finally, the output of the final invocation of the compression function is truncated to give the
hash value.

The generic description of the Blue Midnight Wish hash algorithm is given in Table 1.

Algorithm: Blue Midnight Wish
Input: Message M of length l bits, and the message digest size n.
Output: A message digest Hash, that is n bits long.

1. Preprocessing

(a) Pad the message M .
(b) Parse the padded message into N , m-bit message blocks, M (1),

M (2), . . . , M (N).
(c) Set the initial value of the double pipe H(0).

2. Hash computation

For i = 1 to N

{
Q

(i)
a = f0(M (i), H(i−1));

Q
(i)
b = f1(M (i), H(i−1), Q

(i)
a );

H(i) = f2(M (i), Q
(i)
a , Q

(i)
b );

}
3. Finalization

Qfinal
a = f0(H(N), CONST final);

Qfinal
b = f1(H(N), CONST final, Qfinal

a );

Hfinal = f2(H(N), Qfinal
a , Qfinal

b );

4. Hash =Take n Least Significant Bits(Hfinal).

Table 1: A generic description of the Blue Midnight Wish hash algorithm

A graphic representation of the Blue Midnight Wish hash algorithm and its complete decomposition
is given in the Figure 1.

2 SantaCrypt 2009



Figure 1: A graphic representation of the fully decomposed Blue Midnight Wish hash algorithm.

SantaCrypt 2009 3



3.2 The basic structure

The basic structure consists of three functions f0, f1 and f2. If we denote by f the compression function,
then we can symbolically represent f as f = f2 ◦ f1 ◦ f0. The compression function have two inputs, the
old chaining value H (which is set to a constant IV in the beginning) and a message block M . Both enter
the function f0, which creates the value Qa. Then H, Qa and M enter the function f1 which produces
Qb. At the end, Qb, Qa and M enter the function f2, which creates the new chaining value H. For the
security of the whole hash function it is very important that the values M , Qa, Qb, and H are twice
as long as the final hash value. It makes creating multi-collisions from collisions of the chaining values
ineffective. Definitions of the functions f0, f1, f2 and the logic functions are showed in the appendix.

3.3 Decomposition of the function f0

We can write symbolically f0 = A3 ◦ A2 ◦ A1 ◦ A0 as a composition of alternating binary (⊕) and
arithmetical (additions/subtractions mod 2w) transformations (bijections or multipermutations).

Qa = f0(M,H) = A3(A2(A1(A0(M, H))), H), X = A0(M,H) = M ⊕H, where A0 only xors appropriate
(particular) input words together, W = A1(X), where A1 creates output words by applying additions
and subtractions on 5 summands modulo 2w, S = A2(W ), where A2 uses binary operations xors, shifts
and rotations on input words, Qa = A3(S, H) = S + ROTL1(H), where A3 adds S and rotated vector
H component wise, also modulo 2w.

The useful expression is Qa = A2(A1(M ⊕H)) + ROTL1(H), where

W = A1(X):
W0 = X5 − X7 + X10 + X13 + X14
W1 = X6 − X8 + X11 + X14 − X15
W2 = X0 + X7 + X9 − X12 + X15
W3 = X0 − X1 + X8 − X10 + X13
W4 = X1 + X2 + X9 − X11 − X14
W5 = X3 − X2 + X10 − X12 + X15
W6 = X4 − X0 − X3 − X11 + X13
W7 = X1 − X4 − X5 − X12 − X14
W8 = X2 − X5 − X6 + X13 − X15
W9 = X0 − X3 + X6 − X7 + X14
W10 = X8 − X1 − X4 − X7 + X15
W11 = X8 − X0 − X2 − X5 + X9
W12 = X1 + X3 − X6 − X9 + X10
W13 = X2 + X4 + X7 + X10 + X11
W14 = X3 − X5 + X8 − X11 − X12
W15 = X12 − X4 − X6 − X9 + X13

S = A2(W ):
S0 = s0(W0) S1 = s1(W1) S2 = s2(W2) S3 = s3(W3)
S4 = s4(W4) S5 = s0(W5) S6 = s1(W6) S7 = s2(W7)
S8 = s3(W8) S9 = s4(W9) S10 = s0(W10) S11 = s1(W11)

S12 = s2(W12) S13 = s3(W13) S14 = s4(W14) S15 = s0(W15)

Qa = A3(S, H):

Q0 = S0 + H1; Q1 = S1 + H2; Q2 = S2 + H3; Q3 = S3 + H4;
Q4 = S4 + H5; Q5 = S5 + H6; Q6 = S6 + H7; Q7 = S7 + H8;
Q8 = S8 + H9; Q9 = S9 + H10; Q10 = S10 + H11; Q11 = S11 + H12;

Q12 = S12 + H13; Q13 = S13 + H14; Q14 = S14 + H15; Q15 = S15 + H0;

3.4 Decomposition of the function f1

The function f1 can be viewed as a (weak) block cipher with the default value of NR = 16 rounds. NR is
divided into two parts, NR = ExpandRounds1+ExpandRounds2. At first the transformation expand1()
is used with number of rounds ExpandRounds1. Then the the second transformation expand2() follows
with the remaining number of rounds ExpandRounds2 = NR − ExpandRounds1. Note that the first
transformation is more complex and is assumed as tunable parameter. Increasing it (at the expense of
the second one) it is possible to tune the complexity of Blue Midnight Wish.

If we denote by E the underlying block cipher, then we have the ciphertext Qb = f1(M,Qa) = EA(Qa),
where the key A is created by the transformation AddElement() and Qa is the plaintext.

Here we denote the key as A, because the letter K is used to denote the constants used in AddElement()
transformation.

4 SantaCrypt 2009



Now we have this simple decomposition:

A = AddElement(M,H) = (B(rotM) + K) ⊕ ROTL7(H), where K is a constant K = (16 ∗
0x05555555, ..., 31 ∗ 0x05555555).

The transformation B is similar to A1 and it creates output words adding and subtracting 3 summands
modulo 2w. It is given by the nonsingular matrix over Z2w . If we denote by D = B(M), we have

D0 = M0 + M3 − M10

D1 = M1 + M4 − M11

D2 = M2 + M5 − M12

D3 = M3 + M6 − M13

D4 = M4 + M7 − M14

D5 = M5 + M8 − M15

D6 = M6 + M9 − M0

D7 = M7 + M10 − M1

D8 = M8 + M11 − M2

D9 = M9 + M12 − M3

D10 = M10 + M13 − M4

D11 = M11 + M14 − M5

D12 = M12 + M15 − M6

D13 = M13 + M0 − M7

D14 = M14 + M1 − M8

D15 = M15 + M2 − M9

The function f1 expands Qa = (Q0, ..., Q15) to Qb = (Q16, ..., Q31) according to the tunable parameters
ExpandRounds1 and ExpandRounds2:

1.1 For ii = 0 to ExpandRounds1 − 1
Q

(i)
ii+16 = expand1(ii + 16)

1.2 For ii = ExpandRounds1 to ExpandRounds1 + ExpandRounds2 − 1
Q

(i)
ii+16 = expand2(ii + 16)

where the functions expand1() and expand2() are defined as:

expand1(j)=s1(Qj−16)+s2(Qj−15)+s3(Qj−14)+s0(Qj−13)
+s1(Qj−12)+s2(Qj−11)+s3(Qj−10)+ s0(Qj−9)
+ s1(Qj−8) + s2(Qj−7) + s3(Qj−6) + s0(Qj−5)
+ s1(Qj−4) + s2(Qj−3) + s3(Qj−2) + s0(Qj−1)
+ Aj−16

expand2(j)=Qj−16 +r1(Qj−15)+ Qj−14 +r2(Qj−13)
+Qj−12 +r3(Qj−11)+ Qj−10 + r4(Qj−9)
+ Qj−8 + r5(Qj−7) + Qj−6 + r6(Qj−5)
+ Qj−4 + r7(Qj−3) +s4(Qj−2)+ s5(Qj−1)
+Aj−16.

In order to get an insight of the transformations that compute Qb we will introduce two triangular (upper
and lower) transformations. Those transformations will be separated by a part that can be seen as a
addition of the key A.

Let us first define an upper triangular transformation of P = TU (Qa):

P0 = s1(Q0) + s2(Q1) + s3(Q2) + s0(Q3) + s1(Q4) + s2(Q5) + s3(Q6) + s0(Q7) + s1(Q8) + s2(Q9) + s3(Q10) + s0(Q11) + s1(Q12)+
+s2(Q13) + s3(Q14) + s0(Q15)

P1 = s1(Q1) + s2(Q2) + s3(Q3) + s0(Q4) + s1(Q5) + s2(Q6) + s3(Q7) + s0(Q8) + s1(Q9) + s2(Q10) + s3(Q11) + s0(Q12)+
+s1(Q13) + s2(Q14) + s3(Q15)

P2 = Q2 + r1(Q3) + Q4 + r2(Q5) + Q6 + r3(Q7) + Q8 + r4(Q9) + Q10 + r5(Q11) + Q12 + r6(Q13) + Q14 + r7(Q15)
P3 = Q3 + r1(Q4) + Q5 + r2(Q6) + Q7 + r3(Q8) + Q9 + r4(Q10) + Q11 + r5(Q12) + Q13 + r6(Q14) + Q15
P4 = Q4 + r1(Q5) + Q6 + r2(Q7) + Q8 + r3(Q9) + Q10 + r4(Q11) + Q12 + r5(Q13) + Q14 + r6(Q15)
P5 = Q5 + r1(Q6) + Q7 + r2(Q8) + Q9 + r3(Q10) + Q11 + r4(Q12) + Q13 + r5(Q14) + Q15
P6 = Q6 + r1(Q7) + Q8 + r2(Q9) + Q10 + r3(Q11) + Q12 + r4(Q13) + Q14 + r5(Q15)
P7 = Q7 + r1(Q8) + Q9 + r2(Q10) + Q11 + r3(Q12) + Q13 + r4(Q14) + Q15
P8 = Q8 + r1(Q9) + Q10 + r2(Q11) + Q12 + r3(Q13) + Q14 + r4(Q15)
P9 = Q9 + r1(Q10) + Q11 + r2(Q12) + Q13 + r3(Q14) + Q15
P10 = Q10 + r1(Q11) + Q12 + r2(Q13) + Q14 + r3(Q15)
P11 = Q11 + r1(Q12) + Q13 + r2(Q14) + Q15
P12 = Q12 + r1(Q13) + Q14 + r2(Q15)
P13 = Q13 + r1(Q14) + Q15
P14 = Q14 + r1(Q15)
P15 = Q15

SantaCrypt 2009 5



Analyzing expand1,2() transformations we can locate parts that can be considered as expressions with
variables which are known in advance before the expansion. As we can see, these equations creates a
triangle. We call it upper triangle TU .

Let us denote the transformation KA of the key addition to the vector P i.e. R = KA(P,K) = P + A =
(R0, . . . , R15), where Ri = Ai + Pi, i = 0, . . . , 15.

Finally, we define lower triangle transformation Qb = TL(R) as:

Q16 = R0
Q17 = R1 + s0(Q16)
Q18 = R2 + s4(Q16) + s5(Q17)
Q19 = R3 + r7(Q16) + s4(Q17) + s5(Q18)
Q20 = R4 + Q16 + r7(Q17) + s4(Q18) + s5(Q19)
Q21 = R5 + r6(Q16) + Q17 + r7(Q18) + s4(Q19) + s5(Q20)
Q22 = R6 + Q16 + r6(Q17) + Q18 + r7(Q19) + s4(Q20) + s5(Q21)
Q23 = R7 + r5(Q16) + Q17 + r6(Q18) + Q19 + r7(Q20) + s4(Q21) + s5(Q22)
Q24 = R8 + Q16 + r5(Q17) + Q18 + r6(Q19) + Q20 + r7(Q21) + s4(Q22) + s5(Q23)
Q25 = R9 + r4(Q16) + Q17 + r5(Q18) + Q19 + r6(Q20) + Q21 + r7(Q22) + s4(Q23) + s5(Q24)
Q26 = R10 + Q16 + r4(Q17) + Q18 + r5(Q19) + Q20 + r6(Q21) + Q22 + r7(Q23) + s4(Q24) + s5(Q25)
Q27 = R11 + r3(Q16) + Q17 + r4(Q18) + Q19 + r5(Q20) + Q21 + r6(Q22) + Q23 + r7(Q24) + s4(Q25) + s5(Q26)
Q28 = R12 + Q16 + r3(Q17) + Q18 + r4(Q19) + Q20 + r5(Q21) + Q22 + r6(Q23) + Q24 + r7(Q25) + s4(Q26) + s5(Q27)
Q29 = R13 + r2(Q16) + Q17 + r3(Q18) + Q19 + r4(Q20) + Q21 + r5(Q22) + Q23 + r6(Q24) + Q25 + r7(Q26) + s4(Q27) + s5(Q28)
Q30 = R14 + Q16 + r2(Q17) + Q18 + r3(Q19) + Q20 + r4(Q21) + Q22 + r5(Q23) + Q24 + r6(Q25) + Q26 + r7(Q27) + s4(Q28) + s5(Q29)
Q31 = R15 + r1(Q16) + Q17 + r2(Q18) + Q19 + r3(Q20) + Q21 + r4(Q22) + Q23 + r5(Q24) + Q25 + r6(Q26) + Q27 + r7(Q28) + s4(Q29) + s5(Q30)

We can see that the upper triangle transformation could be computed independently first, then we can
apply key addition to the result and then we can apply the lower triangle transformation on the result. In
other words the upper triangular computation is parallelizable, while the lower triangular computation
uses variables just computed, i.e. it uses a feedback. Note that the decomposition f1 = TL ◦KA ◦ TU

doesn’t depend on the choice of tunable parameter. The choice has influence to the internal definition of
the transformations TU and TL, not to the decomposition and character of TU and TL themself.

Having this decomposition f1 = TL ◦KA ◦ TU where TU , KA and TL are bijective and/or multipermu-
tation transformations, we can get the following decomposition:

P = TU (Qa),
A = AddElement(M, H) = (B(rotM) + K)⊕ROTL7(H),
R = KA(P,A) = P + A,
Qb = TL(R)

or
Qb = f1(M,H,Qa) = TL(TU (Qa) + A),

or
Qb = f1(M,H,Qa) = TL(TU (Qa) + ((B(rotM) + K)⊕ROTL7(H))).

This decomposition shows very simply how the variables are processed. It separates inputs in a clear and
understandable way and shows how they are mixed using different bijections and multipermutations.

3.5 Decomposition of the function f2

The folding function f2 compresses the three inputs M , Qa and Qb into H = f2(M,Qa, Qb). It uses
bijective binary linear transformation (matrix) L, which is divided into two matrices La and Lb, where
L = La ⊕ Lb.

La(Qb) =



SHL5(XH) ⊕ SHR5(Q
(i)
16 )

SHR7(XH) ⊕ SHL8(Q
(i)
17 )

SHR5(XH) ⊕ SHL5(Q
(i)
18 )

SHR1(XH) ⊕ SHL5(Q
(i)
19 )

SHR3(XH) ⊕ Q
(i)
20

SHL6(XH) ⊕ SHR6(Q
(i)
21 )

SHR4(XH) ⊕ SHL6(Q
(i)
22 )

SHR11(XH) ⊕ SHL2(Q
(i)
23 )

XH ⊕ Q
(i)
24

XH ⊕ Q
(i)
25

XH ⊕ Q
(i)
26

XH ⊕ Q
(i)
27

XH ⊕ Q
(i)
28

XH ⊕ Q
(i)
29

XH ⊕ Q
(i)
30

XH ⊕ Q
(i)
31



, Lb(Qb) =



XL ⊕ Q
(i)
24

XL ⊕ Q
(i)
25

XL ⊕ Q
(i)
26

XL ⊕ Q
(i)
27

XL ⊕ Q
(i)
28

XL ⊕ Q
(i)
29

XL ⊕ Q
(i)
30

XL ⊕ Q
(i)
31

SHL8(XL) ⊕ Q
(i)
23

SHR6(XL) ⊕ Q
(i)
16

SHL6(XL) ⊕ Q
(i)
17

SHL4(XL) ⊕ Q
(i)
18

SHR3(XL) ⊕ Q
(i)
19

SHR4(XL) ⊕ Q
(i)
20

SHR7(XL) ⊕ Q
(i)
21

SHR2(XL) ⊕ Q
(i)
22


6 SantaCrypt 2009



The matrices La and Lb are not bijections, but have the ranks near to the full rank value. They were
selected to provide fast binary mixing separately on their variables, and giving a bijection together.

The function f2 can be decomposed into several functions. We define:

f3(M, Qb) = La(Qb)⊕M,
f4(Qa, Qb) = Lb(Qb)⊕Qa,

G = f3(M, Qb) + f4(Qa, Qb) = (M ⊕ La(Qb)) + (Qa ⊕ Lb(Qb)),
H = f6(G) = G + f5(G),

where f5 is Feistel-like transformation and where f6 is one Feistel-like round.

f5(X) =



0
0
0
0
0
0
0
0

ROTL9(X4)
ROTL10(X5)
ROTL11(X6)
ROTL12(X7)
ROTL13(X0)
ROTL14(X1)
ROTL15(X2)
ROTL16(X3)


.

Finally we can write decomposition of f2 as:

f2 = f6(f3 + f4),
H = f2(M,Qa, Qb) = f6((M ⊕ La(Qb)) + (Qa ⊕ Lb(Qb))).

From cryptographic point of view, transformation f6 is very useful for statistical randomization of the
result. On the other hand for cryptanalytic purposes (for instance when studying collisions or preimages),
it is possible to explore at first the value G, because H is a bijective image just only of G, without input
of any other variable. When we want to find collisions or pseudo-collisions, it suffices to find out them on
G-values. Note however that in the case of (pseudo) preimages, the final invocation of the compression
function is very restrictive and is there as a security measure against those pseudo-attacks.

In any case we have this simple decomposition:

G = (M ⊕ La(Qb)) + (Qa ⊕ Lb(Qb)).

3.6 Decomposition of the compression function f

Now we can write the complete decomposition of the compression function f . The value newH is
computed as follows, what is the complete decomposition of the compression function f:

Qa = f0(M,H) = A2(A1(M ⊕H)) + ROTL1(H),
Qb = f1(M,H,Qa) = TL(TU (Qa) + ((B(rotM) + K)⊕ROTL7(H))),
G = f3(M,Qb) + f4(Qa, Qb) = (M ⊕ La(Qb)) + (Qa ⊕ Lb(Qb)),

newH = f(M,H) = f6(G).

The transformation L(Qb) = La(Qb)⊕La(Qb) is a dominant part in the G-value (M ⊕La(Qb)) + (Qa ⊕
Lb(Qb)). As we already mentioned, the partial linear transformations La and Lb are not bijective, but
they have a very high rank (so they are near to bijective transformations). Additionally both parts La

and Lb are summed together arithmetically, and thus when we don’t assume carry bits, they are summed
linearly together and creates the linear bijective image L(Qb) of Qb.

From cryptanalytic point of view we can approximate H by the G value and the G value ((M⊕La(Qb))+
(Qa ⊕Lb(Qb))) by the expression M ⊕L(Qb)⊕Qa or even more simply by M ⊕Qb ⊕Qa. Then we have

Gsimplified ≈M ⊕Qa ⊕Qb = M ⊕Qa ⊕ TL(TU (Qa) + ((B(rotM) + K)⊕ROTL7(H))).

By this simplification where we omitted the function f6 we can analyze the value G instead of newH.
Thus someone can first start to analyze the following simplified and decomposed compression function f :

SantaCrypt 2009 7



Qa = A2A1(M ⊕H) + ROTL1(H),
Qb = TL(TU (Qa) + ((B(rotM) + K)⊕ROTL7(H))),
G = (M ⊕ La(Qb)) + (Qa ⊕ Lb(Qb)).

We hope that this simple symbolic expression would help cryptanalysts to analyze the hash function and
its parts more effectively, because the relations between variables are now visible more clearly.

4 Bijections and multipermutations in the decompositions

In this section we will number all bijective properties that posses all components of Blue Midnight
Wish. All those properties can be formally and mathematically proved as different Lemmas or Proposi-
tions, but in this paper we just give them without formal proofs.

1. Function f0

• A0(M, H) is a multipermutation
• A1(X) is a bijection
• All si() (xorshifts) are bijections
• A2(W ) is a bijection
• A3(S, H) is a multipermutation
• When H is fixed, f0(M, H) is a bijection

2. Function f1

• TU (Qa) is a bijection
• B is a bijection
• AddElement(M,H) is a multipermutation
• KA(P,K) is a multipermutation
• TL(R) is a bijection
• When A is fixed, f1 is a bijection between Qa and Qb

• When Qa is fixed, f1 is a bijection between A and Qb

• When Qb is fixed, f1 is a bijection between A and Qa

3. Function f2

• L is a bijection
• f3 is a multipermutation
• f4 is a multipermutation
• f5(G) as a function of the first half of the variable G is a bijection
• f6 is a bijection
• When Qb and M are fixed, f2(Qa) is a bijection
• When Qb and Qa are fixed, f2(M) is a bijection

4.1 Some design rationales for Blue Midnight Wish

Additionally to the design rationales given in the official Blue Midnight Wish documentation here we
give several more.

• For different versions of Blue Midnight Wish we use the abbreviations BMW224, BMW256,
BMW384 and BMW512. The abbreviation BMW can be interpreted also as ”Bijections Mounted
Widely” because Blue Midnight Wish uses many bijections and multipermutations entangled
together in a complex way.

• Guaranteed change. Bijections and multipermutations guarantee propagation of changes. When
we fix some value inside, due to many bijections, it has large consequences on fixing more complex
values elsewhere. And this property diffuses through the scheme.

• Bijections and multipermutations are made by arithmetical or binary transformations, which are al-
ways alternating. It assures non-linearity and mixes variables from two essentially different algebraic
structures together.

• Most of bijections and multipermutations provide fast diffusion.
• The use of basic instructions ADD, XOR, Shift Left and Shift Right do not create weaknesses for

side channel attacks.

8 SantaCrypt 2009



5 Conclusions

In this paper we gave simple symbolic description and decomposition of Blue Midnight Wish family.
This gave us a tool for understanding the strength and role of internal design parts and variables.

We hope that this decomposition can serve other cryptanalysts in their attempts for finding weaknesses
or developing new attacks. On the other hand, by expressing all the main principles behind the Blue
Midnight Wish design in this transparent way, we think that the security of Blue Midnight Wish
can be understand even better.

References

[1] Announcing Request for Candidate Algorithm Nominations for a New Cryptographic Hash Algorithm
(SHA-3) Family, 2007, NIST, http://csrc.nist.gov/groups/ST/hash/index.html

[2] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy, Jørn
Amundsen, Stig Frode Mjølsnes: Cryptographic Hash Function Blue Midnight Wish,
September 2009, http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_
Documentation/BlueMidnightWishDocumentation.pdf

Appendix: Definitions of the functions f0, f1, f2 and the logic
functions

Here we show necessary definitions. It is possible to find them also in [2]. The function f0 : {0, 1}2m →
{0, 1}m is defined in the Table 2.

f0 : {0, 1}2m → {0, 1}m
Input: Message block M(i) = (M

(i)
0 , M

(i)
1 , . . . , M

(i)
15 ), and the previous double pipe H(i−1) =

(H
(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 ).

Output: First part of the quadruple pipe Q(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 ).

1. Bijective transform of M(i) ⊕H(i−1):

W
(i)
0 = (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
13 ⊕H

(i−1)
13 ) + (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
1 = (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
8 ⊕H

(i−1)
8 ) + (M

(i)
11 ⊕H

(i−1)
11 ) + (M

(i)
14 ⊕H

(i−1)
14 ) − (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
2 = (M

(i)
0 ⊕H

(i−1)
0 ) + (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
9 ⊕H

(i−1)
9 ) − (M

(i)
12 ⊕H

(i−1)
12 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
3 = (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
13 ⊕H

(i−1)
13 )

W
(i)
4 = (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
9 ⊕H

(i−1)
9 ) − (M

(i)
11 ⊕H

(i−1)
11 ) − (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
5 = (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
10 ⊕H

(i−1)
10 ) − (M

(i)
12 ⊕H

(i−1)
12 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
6 = (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
11 ⊕H

(i−1)
11 ) + (M

(i)
13 ⊕H

(i−1)
13 )

W
(i)
7 = (M

(i)
1 ⊕H

(i−1)
1 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
12 ⊕H

(i−1)
12 ) − (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
8 = (M

(i)
2 ⊕H

(i−1)
2 ) − (M

(i)
5 ⊕H

(i−1)
5 ) − (M

(i)
6 ⊕H

(i−1)
6 ) + (M

(i)
13 ⊕H

(i−1)
13 ) − (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
9 = (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
3 ⊕H

(i−1)
3 ) + (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
14 ⊕H

(i−1)
14 )

W
(i)
10 = (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
1 ⊕H

(i−1)
1 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
15 ⊕H

(i−1)
15 )

W
(i)
11 = (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
0 ⊕H

(i−1)
0 ) − (M

(i)
2 ⊕H

(i−1)
2 ) − (M

(i)
5 ⊕H

(i−1)
5 ) + (M

(i)
9 ⊕H

(i−1)
9 )

W
(i)
12 = (M

(i)
1 ⊕H

(i−1)
1 ) + (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
9 ⊕H

(i−1)
9 ) + (M

(i)
10 ⊕H

(i−1)
10 )

W
(i)
13 = (M

(i)
2 ⊕H

(i−1)
2 ) + (M

(i)
4 ⊕H

(i−1)
4 ) + (M

(i)
7 ⊕H

(i−1)
7 ) + (M

(i)
10 ⊕H

(i−1)
10 ) + (M

(i)
11 ⊕H

(i−1)
11 )

W
(i)
14 = (M

(i)
3 ⊕H

(i−1)
3 ) − (M

(i)
5 ⊕H

(i−1)
5 ) + (M

(i)
8 ⊕H

(i−1)
8 ) − (M

(i)
11 ⊕H

(i−1)
11 ) − (M

(i)
12 ⊕H

(i−1)
12 )

W
(i)
15 = (M

(i)
12 ⊕H

(i−1)
12 ) − (M

(i)
4 ⊕H

(i−1)
4 ) − (M

(i)
6 ⊕H

(i−1)
6 ) − (M

(i)
9 ⊕H

(i−1)
9 ) + (M

(i)
13 ⊕H

(i−1)
13 )

2. Further bijective transform of W
(i)
j , j = 0, . . . , 15:

Q
(i)
0 = s0(W

(i)
0 ) + H

(i−1)
1 ; Q

(i)
1 = s1(W

(i)
1 ) + H

(i−1)
2 ; Q

(i)
2 = s2(W

(i)
2 ) + H

(i−1)
3 ; Q

(i)
3 = s3(W

(i)
3 ) + H

(i−1)
4 ;

Q
(i)
4 = s4(W

(i)
4 ) + H

(i−1)
5 ; Q

(i)
5 = s0(W

(i)
5 ) + H

(i−1)
6 ; Q

(i)
6 = s1(W

(i)
6 ) + H

(i−1)
7 ; Q

(i)
7 = s2(W

(i)
7 ) + H

(i−1)
8 ;

Q
(i)
8 = s3(W

(i)
8 ) + H

(i−1)
9 ; Q

(i)
9 = s4(W

(i)
9 ) + H

(i−1)
10 ; Q

(i)
10 = s0(W

(i)
10 ) + H

(i−1)
11 ; Q

(i)
11 = s1(W

(i)
11 ) + H

(i−1)
12 ;

Q
(i)
12 = s2(W

(i)
12 ) + H

(i−1)
13 ; Q

(i)
13 = s3(W

(i)
13 ) + H

(i−1)
14 ; Q

(i)
14 = s4(W

(i)
14 ) + H

(i−1)
15 ; Q

(i)
15 = s0(W

(i)
15 ) + H

(i−1)
0 ;

Table 2: Definition of the function f0 of Blue Midnight Wish

The function f1 : {0, 1}3m → {0, 1}m is defined in the Table 3.

SantaCrypt 2009 9



f1 : {0, 1}3m → {0, 1}m
Input: Message block M(i) = (M

(i)
0 , M

(i)
1 , . . . , M

(i)
15 ), the previous double pipe H(i−1) = (H

(i−1)
0 , H

(i−1)
1 , . . . , H

(i−1)
15 )

and the first part of the quadruple pipe Q(i)
a = (Q

(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 ).

Output: Second part of the quadruple pipe Q
(i)
b

= (Q
(i)
16 , Q

(i)
17 , . . . , Q

(i)
31 ).

1. Double pipe expansion according to the tunable parameters ExpandRounds1 and ExpandRounds2.

1.1 For ii = 0 to ExpandRounds1 − 1

Q
(i)
ii+16 = expand1(ii + 16)

1.2 For ii = ExpandRounds1 to ExpandRounds1 + ExpandRounds2 − 1

Q
(i)
ii+16 = expand2(ii + 16)

Table 3: Definition of the function f1 of Blue Midnight Wish

The function f2 : {0, 1}3m → {0, 1}m is defined in the Table 4.

Folding f2 : {0, 1}3m → {0, 1}m

Input: Message block M(i) = (M
(i)
0 , M

(i)
1 , . . . , M

(i)
15 ),

quadruple pipe Q(i) = (Q
(i)
0 , Q

(i)
1 , . . . , Q

(i)
15 , Q

(i)
16 , . . . , Q

(i)
31 ).

Output: New double pipe H(i) = (H
(i)
0 , H

(i)
1 , . . . , H

(i)
15 ).

1. Compute the cumulative temporary variables XL and XH.

XL = Q
(i)
16 ⊕ Q

(i)
17 ⊕ . . . ⊕ Q

(i)
23

XH = XL ⊕ Q
(i)
24 ⊕ Q

(i)
25 ⊕ . . . ⊕ Q

(i)
31

2. Compute the new double pipe H(i):

H
(i)
0 =

(
SHL5(XH) ⊕ SHR5(Q

(i)
16 ) ⊕ M

(i)
0

)
+

(
XL ⊕ Q

(i)
24 ⊕ Q

(i)
0

)
H

(i)
1 =

(
SHR7(XH) ⊕ SHL8(Q

(i)
17 ) ⊕ M

(i)
1

)
+

(
XL ⊕ Q

(i)
25 ⊕ Q

(i)
1

)
H

(i)
2 =

(
SHR5(XH) ⊕ SHL5(Q

(i)
18 ) ⊕ M

(i)
2

)
+

(
XL ⊕ Q

(i)
26 ⊕ Q

(i)
2

)
H

(i)
3 =

(
SHR1(XH) ⊕ SHL5(Q

(i)
19 ) ⊕ M

(i)
3

)
+

(
XL ⊕ Q

(i)
27 ⊕ Q

(i)
3

)
H

(i)
4 =

(
SHR3(XH) ⊕ Q

(i)
20 ⊕ M

(i)
4

)
+

(
XL ⊕ Q

(i)
28 ⊕ Q

(i)
4

)
H

(i)
5 =

(
SHL6(XH) ⊕ SHR6(Q

(i)
21 ) ⊕ M

(i)
5

)
+

(
XL ⊕ Q

(i)
29 ⊕ Q

(i)
5

)
H

(i)
6 =

(
SHR4(XH) ⊕ SHL6(Q

(i)
22 ) ⊕ M

(i)
6

)
+

(
XL ⊕ Q

(i)
30 ⊕ Q

(i)
6

)
H

(i)
7 =

(
SHR11(XH) ⊕ SHL2(Q

(i)
23 ) ⊕ M

(i)
7

)
+

(
XL ⊕ Q

(i)
31 ⊕ Q

(i)
7

)
H

(i)
8 = ROTL9(H

(i)
4 ) +

(
XH ⊕ Q

(i)
24 ⊕ M

(i)
8

)
+

(
SHL8(XL) ⊕ Q

(i)
23 ⊕ Q

(i)
8

)
H

(i)
9 =ROTL10(H

(i)
5 ) +

(
XH ⊕ Q

(i)
25 ⊕ M

(i)
9

)
+

(
SHR6(XL) ⊕ Q

(i)
16 ⊕ Q

(i)
9

)
H

(i)
10 =ROTL11(H

(i)
6 ) +

(
XH ⊕ Q

(i)
26 ⊕ M

(i)
10

)
+

(
SHL6(XL) ⊕ Q

(i)
17 ⊕ Q

(i)
10

)
H

(i)
11 =ROTL12(H

(i)
7 ) +

(
XH ⊕ Q

(i)
27 ⊕ M

(i)
11

)
+

(
SHL4(XL) ⊕ Q

(i)
18 ⊕ Q

(i)
11

)
H

(i)
12 =ROTL13(H

(i)
0 ) +

(
XH ⊕ Q

(i)
28 ⊕ M

(i)
12

)
+

(
SHR3(XL) ⊕ Q

(i)
19 ⊕ Q

(i)
12

)
H

(i)
13 =ROTL14(H

(i)
1 ) +

(
XH ⊕ Q

(i)
29 ⊕ M

(i)
13

)
+

(
SHR4(XL) ⊕ Q

(i)
20 ⊕ Q

(i)
13

)
H

(i)
14 =ROTL15(H

(i)
2 ) +

(
XH ⊕ Q

(i)
30 ⊕ M

(i)
14

)
+

(
SHR7(XL) ⊕ Q

(i)
21 ⊕ Q

(i)
14

)
H

(i)
15 =ROTL16(H

(i)
3 ) +

(
XH ⊕ Q

(i)
31 ⊕ M

(i)
15

)
+

(
SHR2(XL) ⊕ Q

(i)
22 ⊕ Q

(i)
15

)
Table 4: Definition of the folding function f2 of Blue Midnight Wish

Blue Midnight Wish uses the logic functions, summarized in Table 5.

10 SantaCrypt 2009



BMW224/BMW256 BMW384/BMW512

s0(x) = SHR1(x) ⊕ SHL3(x) ⊕ ROT L4(x) ⊕ ROT L19(x) s0(x) = SHR1(x) ⊕ SHL3(x) ⊕ ROT L4(x) ⊕ ROT L37(x)
s1(x) = SHR1(x) ⊕ SHL2(x) ⊕ ROT L8(x) ⊕ ROT L23(x) s1(x) = SHR1(x) ⊕ SHL2(x) ⊕ ROT L13(x) ⊕ ROT L43(x)
s2(x) = SHR2(x) ⊕ SHL1(x) ⊕ ROT L12(x) ⊕ ROT L25(x) s2(x) = SHR2(x) ⊕ SHL1(x) ⊕ ROT L19(x) ⊕ ROT L53(x)
s3(x) = SHR2(x) ⊕ SHL2(x) ⊕ ROT L15(x) ⊕ ROT L29(x) s3(x) = SHR2(x) ⊕ SHL2(x) ⊕ ROT L28(x) ⊕ ROT L59(x)
s4(x) = SHR1(x) ⊕ x s4(x) = SHR1(x) ⊕ x

s5(x) = SHR2(x) ⊕ x s5(x) = SHR2(x) ⊕ x

r1(x) = ROT L3(x) r1(x) = ROT L5(x)
r2(x) = ROT L7(x) r2(x) = ROT L11(x)
r3(x) = ROT L13(x) r3(x) = ROT L27(x)
r4(x) = ROT L16(x) r4(x) = ROT L32(x)
r5(x) = ROT L19(x) r5(x) = ROT L37(x)
r6(x) = ROT L23(x) r6(x) = ROT L43(x)
r7(x) = ROT L27(x) r7(x) = ROT L53(x)

AddElement(j) =

(
ROT L((j mod 16)+1)(M

(i)
j

) +

ROT L((j+3 mod 16)+1)(M
(i)
j+3

) − ROT L((j+10 mod 16)+1)(M
(i)
j+10

) +

Kj+16

)
⊕ H

(i)
j+7

AddElement(j) =

(
ROT L((j mod 16)+1)(M

(i)
j

) +

ROT L((j+3 mod 16)+1)(M
(i)
j+3

) − ROT L((j+10 mod 16)+1)(M
(i)
j+10

) +

Kj+16

)
⊕ H

(i)
j+7

expand1(j)= s1(Q
(i)
j−16

) +s2(Q
(i)
j−15

)+s3(Q
(i)
j−14

)+s0(Q
(i)
j−13

)

+ s1(Q
(i)
j−12

) +s2(Q
(i)
j−11

)+s3(Q
(i)
j−10

)+ s0(Q
(i)
j−9

)

+ s1(Q
(i)
j−8

) + s2(Q
(i)
j−7

) + s3(Q
(i)
j−6

) + s0(Q
(i)
j−5

)

+ s1(Q
(i)
j−4

) + s2(Q
(i)
j−3

) + s3(Q
(i)
j−2

) + s0(Q
(i)
j−1

)

+AddElement(j − 16)

expand1(j)= s1(Q
(i)
j−16

) +s2(Q
(i)
j−15

)+s3(Q
(i)
j−14

)+s0(Q
(i)
j−13

)

+ s1(Q
(i)
j−12

) +s2(Q
(i)
j−11

)+s3(Q
(i)
j−10

)+ s0(Q
(i)
j−9

)

+ s1(Q
(i)
j−8

) + s2(Q
(i)
j−7

) + s3(Q
(i)
j−6

) + s0(Q
(i)
j−5

)

+ s1(Q
(i)
j−4

) + s2(Q
(i)
j−3

) + s3(Q
(i)
j−2

) + s0(Q
(i)
j−1

)

+AddElement(j − 16)

expand2(j)= Q
(i)
j−16

+r1(Q
(i)
j−15

)+ Q
(i)
j−14

+r2(Q
(i)
j−13

)

+ Q
(i)
j−12

+r3(Q
(i)
j−11

)+ Q
(i)
j−10

+ r4(Q
(i)
j−9

)

+ Q
(i)
j−8

+ r5(Q
(i)
j−7

) + Q
(i)
j−6

+ r6(Q
(i)
j−5

)

+ Q
(i)
j−4

+ r7(Q
(i)
j−3

) +s4(Q
(i)
j−2

)+ s5(Q
(i)
j−1

)

+AddElement(j − 16)

expand2(j)= Q
(i)
j−16

+r1(Q
(i)
j−15

)+ Q
(i)
j−14

+r2(Q
(i)
j−13

)

+ Q
(i)
j−12

+r3(Q
(i)
j−11

)+ Q
(i)
j−10

+ r4(Q
(i)
j−9

)

+ Q
(i)
j−8

+ r5(Q
(i)
j−7

) + Q
(i)
j−6

+ r6(Q
(i)
j−5

)

+ Q
(i)
j−4

+ r7(Q
(i)
j−3

) +s4(Q
(i)
j−2

)+ s5(Q
(i)
j−1

)

+AddElement(j − 16)

Table 5: Logic functions used in Blue Midnight Wish. Note that for the function AddElement(j)
index expressions involving the variable j for M and H are computed modulo 16.

SantaCrypt 2009 11


