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Abstract 
The main principle how to make n-bit EDON-R hash functions [1] resistant to generic 
multicollisions and multipreimages attacks ([2], [3]) is the 2n-bit width of internal chaining 
value. We show how to degenerate 2n-bit chaining value to n-bit chaining value (for n = 256, 
512) by keeping the half of chaining value constant from the beginning. It circumvents the 
main principle and make EDON-R hash functions (for n = 256, 512) vulnerable to generic 
multicollisions and multipreimages attacks ([2], [3]) with small additional work factor.  
 We show several properties of EDON-R compression function, which could be 
interesting for the next study of collisions and preimages. 
 The first cryptanalysis of EDON-R was made in [4]. We present an independent 
research, partially overlaping with [4].  
 We want to note that this is preliminary version, that we present here only sketches of 
the proofs and that not all of the accompanied problems are completely solved. 
 
 

1 Introduction  
For the sake of simplicity we will deal only with the main variants of n-bit EDON-R, where n 
= 256, 512.  
 
Quasigroup operation. 
The compression function R of EDON-R uses quasigroup operation Q several times. Q has 
two n-bit arguments A, B and gives an n-bit result C = Q(A, B). These values are graphically 
expressed at the Fig. 1, where the arrow starts at A, goes through B and ends at C. C = Q(A, 
B) is defined as C = Q(A, B) = F(A) + G(B), where F: {0,1}n →{0,1}n and G: {0,1}n →{0,1}n 
are two special bijections (which are easily invertible). We will analyse EDON-R without 
using the internal structures of F and G.  
 
Quasigroup rule (QR). 
The definition of Q actually guarantees the following mathematical property:: having any two 
of the values (A, B, C) we can easily compute the remaining one.  
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Fig. 1: The compression function R and the quasigroup operation Q 
 
Compression function R. 
EDON-R uses compression function R, which takes 2n-bit "old" chaining value oldP = (oldP0, 
oldP1) and 2n-bit block M = (M0, M1) and creates new 2n-bit chaining value newP = (newP0, 
newP1) = R(oldP0, oldP1, M0, M1). Note that P0, P1, M0 and M1 are n-bit values (higher and 
lower halves of P and M). 
 
Note 1 (Moving the rotation into the quasigroup operation). 
Function R uses values of M0 and M1 at the top of the scheme on Fig.1 and rotated values of 
M0 and M1, which enter the scheme from the left side. For the sake of simplicity we omit the 
rotated values in the following description. Namely, they can be shifted into the quasigroup 
operations, leaving their QR property unchanged. Thus we will use two quasigroup operations 
Q and Q1, where Q1 is defined as Q1(A, B) = Q(rot(A), B) and the concrete bit rotation "rot" is 
specified in [1].  
 

2 Collisions and fix points  
 
Lemma 1 (Forward compression with fixed half of the chaining value). 
There are functions f: {0,1}n →{0,1}n, g: {0,1}n →{0,1}n, such that for any values of oldP0, 
oldP1 and M0, we have (newP0, newP1) = R(oldP0, oldP1, M0, M1), where M1 = g(oldP0, oldP1, 
M0), newP0 = f(oldP0, oldP1, M0) and newP1 = oldP1. 
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Sketch of the proof. 
Let us choose any oldP0, M0, oldP1 (and newP1 ≡ oldP1). We will define the functions f and g 
in the following manner. Starting from values oldP0, M0 and newP1 ≡ oldP1 and using (QR) 
we can easily compute the values, marked as 1, 2, 3, 4, 5, 6, 7, 8 (in this order in Figure 2). 
We can define the function g as the expression No. 4 in terms of oldP0, oldP1 and M0. 
Similarly, we define the function f as the expression No. 8 in terms of oldP0, oldP1 and M0. 
 

 
Fig.2: Forward compression, leaving the half of the chaining value constant 

 
 
Theorem 1 (collisions and fix points of R). 
(1) We can find a collision of 2n-bit compression function R, starting from the chaining value 
 (IV0, IV1), with the same complexity as finding a collision of a n-bit hash function. 
(2) We can find a fix point of 2n-bit compression function R, starting from the chaining value 
 (IV0, IV1),  with the same complexity as finding a collision of a n-bit hash function. 
(3) For any value of (P0, P1) we can find a collision of 2n-bit compression function R, starting 
 from the chaining value (P0, P1), with the same complexity as finding a collision of a 
 n-bit hash function. 
(4) For any value of (P0, P1) we can find a fix point of 2n-bit compression function R, starting 
 from the chaining value (P0, P1),  with the same complexity as finding a collision of a 
 n-bit hash function. 
 
Sketch of the proof. 
(1)  
First, we will describe how to obtain a collision of R, starting from the chaining value (IV), 
see Figure 3. Let us set oldP = IV. Choose 2n/2 different blocks M0[i] and using Lemma 1 
compute the appropriate M1[i] and the new chaining value newP = (newP0, IV1). In the set of  
2n/2 values of newP0 we will find an n-bit collision P0. Let us denote appropriate blocks M0[i] 
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and M0[j]. The complexity of finding M0[i] and M0[j] is the same as finding a collision of a n-
bit hash function (later we will describe that hash function as the projection of R). Then we 
have R(M0[i], M1[i], IV0, IV1) = R(M0[j], M1[j], IV0, IV1) = (P0, IV1), what gives a 2n-bit 
collision for the compression function R (pseudo-collision of the hash function EDON-R). 
(3) 
From Lemma 1 it follows that we can start the attack (1) from any starting value (P0, P1), not 
only (IV0, IV1). 
(2) 
Now we will describe how to obtain a fix point of R (see the Fig. 4), starting the attack from 
(IV0, IV1). Let us choose 2n/2 different blocks M0[i]. We can build one or several lines 
(starting from (IV0, IV1)) of various lengths as depicted on the Fig.4. In any point of the lines 
we are able to compute appropriate M1[i] (and new chaining variable newP = (newP0, IV1) 
using Lemma 1. Thus the half of the chaining value is everywhere fixed to IV1. Now, in the 
set of all 2n/2 values of newP0 (in the first line or in the whole set of lines) we can find an n-bit 
collision P0. Then we have fix point of R, starting from initializing value (IV0, IV1) and 
ending in the chaining value (P0, IV1) using two different ways (two different messages), 
possibly with different lengths. 
(4) 
From Lemma 1 it follows that we can start the attack (1) from any starting value (P0, P1), not 
only (IV0, IV1). 
 

 
Fig. 3: Finding two different message blocks with the same input and output chaining value. 
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Fig. 4: Finding a fix point of the compressio function R and the hash function EDON-R 

 
 

3 Multicollisions and multipreimages of EDON-R 
Note 2 (multicollisions and multipreimages of EDON-R). 
Theorem 1 gives us a tool for building multicollisions and multipreimages using directly 
generic attacks from [2] and [3] for n-bit hash function with n-bit chaining value. Both types 
of attacks have a common base - the underlying hash function and also a common problem 
with the last block. 
 
The last block problem. 
We can build multicollisions in the known way directly using Theorem 1. We start from the 
IV and find two different blocks, which lead to the same chaining value. Then we start from 
this chaining value and find two different blocks, leading to the same chaining value etc. (or 
we can start hashing a prefix message, leading to common starting value (as it was IV)). In 
any case we end in the same chaining value. It remains to ensure that the last block will 
contain valid padding. The problem is in the fact, that the message blocks have the form [M0, 
M1] =[M0,  g(oldP0, oldP1, M0)] and padding is in the place, where the value g(oldP0, oldP1, 
M0) is stored. So the value g(oldP0, oldP1, M0) has to end with correct padding value.  
 
 
Theorem 2 (The projection of EDON-R to dR). 
We can project n-bit hash function EDON-R with 2n-bit chaining value to a n-bit hash 
function with n-bit chaining value. It enables the attacker to use generic multicollisions and 
multipreimages attacks ([2], [3]) against it with small additional work factor. 
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Sketch of the proof. 
Let R is 2n-bit compression function of n-bit hash function EDON-R. It works with 2n-bit 
chaining value P = (P0, P1) and 2n-bit message block M = (M0, M1). The chaining value starts 
from 2n-bit constant IV = (IV0, IV1) and the hash value is n-bit half (P0) of the final 2n-bit 
chaining value P = (P0, P1).  
 
We can define n-bit compression function dR (degenerated R), working with n-bit message 
block M0 and n-bit chaining value P0, starting from the initialization value IV0. This function 
leads to the same n-bit hash value as EDON-R, but has no precautions against multicollisions 
and multipreimages attacks (because the chaining variable has the same width as the hash 
value).   
 
We can define the degenerated version of R by choosing special value of M1 in the message 
block M = (M0, M1) and setting the variable P1 constant (= IV1) in any step of R.  
Now, when P1 = IV1, we can define the second part of the message block as a function of the 
first part and actual chaining value: M1 = g(P0, IV1, M0). Now from the chaining value P = 
(P0, P1) and this message block M = (M0, M1) we obtain new chaining value 
R(P0, IV1, M0, g(P0, IV1, M0)), what is according to Lemma 1, equal to (newP0, IV1). Also we 
have newP0 = f(oldP0, oldP1, M0), but it is not important. The fact that the next step will start 
from the value (* , IV1) enables us to define the "projection" correctly. 
We define the projection of the function R as dR(P0, M0) ≡ R(P0, IV1, M0, g(P0, IV1, M0)), for 
any values of (P0, M0). dR is in fact a new compression function which has n-bit chaining 
value P0, n-bit message block M0 and starts from n-bit initializing value IV0. The compression 
function dR thus creates an appropriate hash function (dEDON-R), which has n-bit hash value 
equal to its last n-bit chaining value. Thus we have obtained the new hash function, which has 
the same hash value as EDON-R. Because its chaining variable has the same length as the 
hash value itself, there are no precautions of dEDON-R against multicollisions or 
multipreimages attacks. 
 
After finding multicollisions (or multipreimages) of dR, using generic attacks ([2] and [3]), 
we need to project them back to the function R. 
From any value of the chaining variable P0 and message block M0 of dR we can create the 
chaining variable (P0, IV1) and the message block (M0, g(P0, IV1, M0)) of R. According to 
Lemma 1, we have valid state of the function R, excepting the final block, going to the 
compression function. 
 
Note that the final block is the only point, when we cannot set the second part of the message 
block arbitrarily (we need to set it to the special value g(P0, IV1, M0)). The reason is that (at 
minimum) the last 64 +1  bits of this block have to be set to specified number, the padding. 
This number is the smallest padding string, consisting of bit 1 and 64-bit number of hashed 
bits. So, the last 65 bits of g(P0, IV1, M0) should be equal to the specified number. This will 
happen with probability 2-65. The "brute solution" is to exclude any invalid block from the set 
of obtained  multicollisions (or multipreimages), what means to divide the number of them by 
265. Even if 265 is a big number, it is negligible when comparing it to 2n/2 (n = 256, 512).  
There are other ways how to bypass this "last block problem", but in this sketch of the proof 
we won´t deal with them.  
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Note 3 (Mounting an attack from any starting value). 
Note that we can start the attack (the projection) from Theorem 2 from any starting point. For 
instance, we can use a prefix message, which ends with some value of the chaining variable 
(P0, P1). From this point we can project R to dR. 
  
Note 4 (Length extension attack using fixpoints). 
The last block problem is that we need to have the last 65 bits of g(P0, IV1, M0) equal to bit 1 
and the 64-bit number of hashed bits. Using a fix point in the center of the message, we can 
lengthen the message by a lot of message blocks. In this way we can correct the length of the 
message such that the bits 64, 63,..., 10, 9 (9 for n =256, 10 for n =512) from the end of g(P0, 
IV1, M0) - the number of  blocks - are correct. 
 
Note 5 (Complexity of multicollision attack). 
Using Theorem 1 and techniques from [2] we can create 2K multicollisions of EDON-R. The 
complexity of the attack is roughly K*2n/2 hash computations and 2n/2 memory (n = 256, 512). 
We will create one couple of colliding message blocks as is depicted in the Fig. 3 with the 
complexity of 2n/2 hash computations and 2n/2 memory. K such couples will take the 
complexity of K*2n/2 hash computations and 2n/2 memory (we reuse the memory). This 
sequence of dR we project back to R using Theorem 2. Thus we have now the sequence of K 
couples of blocks, ending in the same final chaining value (of the function R). We simply add 
one 2n-bit message block with the correct padding and process it with the function R. This 
will create the 2K multicollisions of EDON-R.   
 

M1 Y0 Y1

M0

M1M0

 
Fig. 5: A tiny internal differential invariability in the compression function 
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4 Random walk backwards 
Theorem 3 (A tiny internal differential invariability in the compression function R). 
For any M0, there exist with high probability two different M1

* ≠ M1
~, one Y1 and two 

different Y0
* ≠ Y0

~, such that 
Y0

* =  Q(rot M1
*, M0)   and   Y1 =  Q(Y0

*, M1
*), 

Y0
~ =  Q(rot M1

~, M0)   and   Y1 =  Q(Y0
~, M1

~),    
where "rot" is the rotation, described in Note 1. 
We can rewrite the theorem in this form: For a given fixed M0 we can find two different 
inputs M1

* and M1
~ in the scheme of R (Fig. 5) such that there will be two different values of 

Y0 (Y0
* and Y0

~ ), but only one value of Y1. So, the differences in M1 can´t be canceled in Y0, 
but will be canceled in Y .  1
 
Sketch of the proof. 
We substitute Y0

* =  Q(rot M1
*, M0)  into Y1 =  Q(Y0

*, M1
*) and obtain 

Y1 =  Q(Q(rot M1
*, M0), M1

*) = F(Q(rot M1
*, M0)) + G(M1

*) = F(F(rot M1
*) + G(M0)) + 

G(M1
*). We also substitute Y0

~ =  Q(rot M1
~, M0)  into Y1 =  Q(Y0

~, M1
~) and obtain similarly 

Y1 = F(F(rot M1
~) + G(M0)) + G(M1

~). So we want to find two different solution M1
* and M1

~ 
of the equation Y1 = F(F(rot M1) + G(M0)) + G(M1), where G(M0) is a constant. Because F 
and "rot" are bijections on {0,1}n, we have a new bijection F1 on {0,1}n, defined by the 
relation F1(M1) = F(F(rot M1

*) + const). We will find the two solutions of  the equation Y1 = 
F1(M1) + G(M1). It is possible to expect that the expression F1(M1) + G(M1), for M1 going 
through all values of {0,1}n, determines random function f:{0,1}n →{0,1}n : M1 → F1(M1) + 
G(M1). So, in the range f({0,1}n) there will be many collisions. We can find one of them by 
birthday paradox. We generate 2n/2 of different random values M1 and then find a collision in 
the f-image of them.  
Complexity of this solution is the same as finding a collision of a n-bit hash function.  
 
Note 6 (Using the pair M0, M1

* and M0, M1
~ only once). 

In the following text it suffices to use only one pair of M0, M1
* and M0, M1

~, computed 
according to the proof of Theorem 3. But for variability or for any other purposes we can 
generate several such pairs for different M .  0
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Fig. 6: Using the differential in half of the message block M1

  
Theorem 4 (Random walk backwards). 
Let us choose one of the solutions of Theorem 3 (M0, M1

* and M0, M1
~). Let us set the 

chaining variable of R to any value (newP0, newP1). Then we can easily compute two 
different preimages of R, (oldP0

*, oldP1) and (oldP0
~, oldP1) such that  

R(oldP0
*, oldP1, M0, M1

*) = R(oldP0
~, oldP1, M0, M1

~) = (newP0, newP1). These preimages 
have half of the chaining variable (oldP ) the same, whereas the remaining part is different. 1
 
Sketch of the proof. 
The computation of (oldP0

*, oldP1) and (oldP0
~, oldP1) can be seen on the Fig.6. Let us first 

compute the values Y0
* and Y0

~ and Y1 according to the Theorem 3. The values Y0
* and Y0

~ 
are different, but leading to the same value of Y1. The same values are yellow, the different 
values are green and they are marked with * and ~. Now we will compute consequently 
values marked 1, 2, 3, 4, 5, 6 in this order. We will compute them using the (QR). We can see 
that in computing values 1 - 5, we always use the two arguments of the (QR) constant 
(yellow). Only when we compute oldP0 in the step 6, we are using two different values of Y0. 
This gives two different values of oldP0 (oldP0

* and oldP0
~). 
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Fig. 7: Random walk backwards 

 
Note 7 (Getting multi-preimages of R). 
According to the Theorem 4 we can start from any value of chaining variable (for instance 
hash value, padded by n random bits) and go one step backwards. We obtain two different 
preimages of the chaining variable of R. In the second step backwards we obtain 22 preimages 
etc. and in the m-th step we have 2m preimages (of the final hash and even of the final 
chaining value).  
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Conclusion 
We show several properties of EDON-R compression function, which could be interesting for 
the study of collisions and preimages. 
 We show for instance how to degenerate 2n-bit chaining value of EDON-R to n-bit 
chaining value. It makes EDON-R hash functions (for n = 256, 512) vulnerable to generic 
multicollisions and multipreimages attacks ([2], [3]) with small additional work factor. The 
complexity of obtaining 2K multicollisions is K*2n/2 (hash) computations and 2n/2 memory. 
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