
Multicollisions of EDON-R hash function and other
observations

(preliminary version)

Vlastimil Klima1

Abstract
The main principle how to make n-bit EDON-R hash functions [1] resistant to generic
multicollisions and multipreimages attacks ([2], [3]) is the 2n-bit width of internal chaining
value. We show how to degenerate 2n-bit chaining value to n-bit chaining value (for n = 256,
512) by keeping the half of chaining value constant from the beginning. It circumvents the
main principle and make EDON-R hash functions (for n = 256, 512) vulnerable to generic
multicollisions and multipreimages attacks ([2], [3]) with small additional work factor.
 We show several properties of EDON-R compression function, which could be
interesting for the next study of collisions and preimages.
 The first cryptanalysis of EDON-R was made in [4]. We present an independent
research, partially overlaping with [4].
 We want to note that this is preliminary version, that we present here only sketches of
the proofs and that not all of the accompanied problems are completely solved.

1 Introduction
For the sake of simplicity we will deal only with the main variants of n-bit EDON-R, where n
= 256, 512.

Quasigroup operation.
The compression function R of EDON-R uses quasigroup operation Q several times. Q has
two n-bit arguments A, B and gives an n-bit result C = Q(A, B). These values are graphically
expressed at the Fig. 1, where the arrow starts at A, goes through B and ends at C. C = Q(A,
B) is defined as C = Q(A, B) = F(A) + G(B), where F: {0,1}n →{0,1}n and G: {0,1}n →{0,1}n
are two special bijections (which are easily invertible). We will analyse EDON-R without
using the internal structures of F and G.

Quasigroup rule (QR).
The definition of Q actually guarantees the following mathematical property:: having any two
of the values (A, B, C) we can easily compute the remaining one.

1 Independent cryptologist, Prague, Czech Republic, http://cryptography.hyperlink.cz,
v.klima@volny.cz

1

http://cryptography.hyperlink.cz/
mailto:v.klima@volny.cz

Fig. 1: The compression function R and the quasigroup operation Q

Compression function R.
EDON-R uses compression function R, which takes 2n-bit "old" chaining value oldP = (oldP0,
oldP1) and 2n-bit block M = (M0, M1) and creates new 2n-bit chaining value newP = (newP0,
newP1) = R(oldP0, oldP1, M0, M1). Note that P0, P1, M0 and M1 are n-bit values (higher and
lower halves of P and M).

Note 1 (Moving the rotation into the quasigroup operation).
Function R uses values of M0 and M1 at the top of the scheme on Fig.1 and rotated values of
M0 and M1, which enter the scheme from the left side. For the sake of simplicity we omit the
rotated values in the following description. Namely, they can be shifted into the quasigroup
operations, leaving their QR property unchanged. Thus we will use two quasigroup operations
Q and Q1, where Q1 is defined as Q1(A, B) = Q(rot(A), B) and the concrete bit rotation "rot" is
specified in [1].

2 Collisions and fix points

Lemma 1 (Forward compression with fixed half of the chaining value).
There are functions f: {0,1}n →{0,1}n, g: {0,1}n →{0,1}n, such that for any values of oldP0,
oldP1 and M0, we have (newP0, newP1) = R(oldP0, oldP1, M0, M1), where M1 = g(oldP0, oldP1,
M0), newP0 = f(oldP0, oldP1, M0) and newP1 = oldP1.

2

Sketch of the proof.
Let us choose any oldP0, M0, oldP1 (and newP1 ≡ oldP1). We will define the functions f and g
in the following manner. Starting from values oldP0, M0 and newP1 ≡ oldP1 and using (QR)
we can easily compute the values, marked as 1, 2, 3, 4, 5, 6, 7, 8 (in this order in Figure 2).
We can define the function g as the expression No. 4 in terms of oldP0, oldP1 and M0.
Similarly, we define the function f as the expression No. 8 in terms of oldP0, oldP1 and M0.

Fig.2: Forward compression, leaving the half of the chaining value constant

Theorem 1 (collisions and fix points of R).
(1) We can find a collision of 2n-bit compression function R, starting from the chaining value
 (IV0, IV1), with the same complexity as finding a collision of a n-bit hash function.
(2) We can find a fix point of 2n-bit compression function R, starting from the chaining value
 (IV0, IV1), with the same complexity as finding a collision of a n-bit hash function.
(3) For any value of (P0, P1) we can find a collision of 2n-bit compression function R, starting
 from the chaining value (P0, P1), with the same complexity as finding a collision of a
 n-bit hash function.
(4) For any value of (P0, P1) we can find a fix point of 2n-bit compression function R, starting
 from the chaining value (P0, P1), with the same complexity as finding a collision of a
 n-bit hash function.

Sketch of the proof.
(1)
First, we will describe how to obtain a collision of R, starting from the chaining value (IV),
see Figure 3. Let us set oldP = IV. Choose 2n/2 different blocks M0[i] and using Lemma 1
compute the appropriate M1[i] and the new chaining value newP = (newP0, IV1). In the set of
2n/2 values of newP0 we will find an n-bit collision P0. Let us denote appropriate blocks M0[i]

3

and M0[j]. The complexity of finding M0[i] and M0[j] is the same as finding a collision of a n-
bit hash function (later we will describe that hash function as the projection of R). Then we
have R(M0[i], M1[i], IV0, IV1) = R(M0[j], M1[j], IV0, IV1) = (P0, IV1), what gives a 2n-bit
collision for the compression function R (pseudo-collision of the hash function EDON-R).
(3)
From Lemma 1 it follows that we can start the attack (1) from any starting value (P0, P1), not
only (IV0, IV1).
(2)
Now we will describe how to obtain a fix point of R (see the Fig. 4), starting the attack from
(IV0, IV1). Let us choose 2n/2 different blocks M0[i]. We can build one or several lines
(starting from (IV0, IV1)) of various lengths as depicted on the Fig.4. In any point of the lines
we are able to compute appropriate M1[i] (and new chaining variable newP = (newP0, IV1)
using Lemma 1. Thus the half of the chaining value is everywhere fixed to IV1. Now, in the
set of all 2n/2 values of newP0 (in the first line or in the whole set of lines) we can find an n-bit
collision P0. Then we have fix point of R, starting from initializing value (IV0, IV1) and
ending in the chaining value (P0, IV1) using two different ways (two different messages),
possibly with different lengths.
(4)
From Lemma 1 it follows that we can start the attack (1) from any starting value (P0, P1), not
only (IV0, IV1).

Fig. 3: Finding two different message blocks with the same input and output chaining value.

4

M0[0]
IV0

IV1

*

IV1

M0[1]

M0[i]

*

IV1

*

IV1

*

IV1

*

IV1

M0[*]

M0[*]
*

IV1

*

IV1

*

IV1

a collision in one line

a collision

Fig. 4: Finding a fix point of the compressio function R and the hash function EDON-R

3 Multicollisions and multipreimages of EDON-R
Note 2 (multicollisions and multipreimages of EDON-R).
Theorem 1 gives us a tool for building multicollisions and multipreimages using directly
generic attacks from [2] and [3] for n-bit hash function with n-bit chaining value. Both types
of attacks have a common base - the underlying hash function and also a common problem
with the last block.

The last block problem.
We can build multicollisions in the known way directly using Theorem 1. We start from the
IV and find two different blocks, which lead to the same chaining value. Then we start from
this chaining value and find two different blocks, leading to the same chaining value etc. (or
we can start hashing a prefix message, leading to common starting value (as it was IV)). In
any case we end in the same chaining value. It remains to ensure that the last block will
contain valid padding. The problem is in the fact, that the message blocks have the form [M0,
M1] =[M0, g(oldP0, oldP1, M0)] and padding is in the place, where the value g(oldP0, oldP1,
M0) is stored. So the value g(oldP0, oldP1, M0) has to end with correct padding value.

Theorem 2 (The projection of EDON-R to dR).
We can project n-bit hash function EDON-R with 2n-bit chaining value to a n-bit hash
function with n-bit chaining value. It enables the attacker to use generic multicollisions and
multipreimages attacks ([2], [3]) against it with small additional work factor.

5

Sketch of the proof.
Let R is 2n-bit compression function of n-bit hash function EDON-R. It works with 2n-bit
chaining value P = (P0, P1) and 2n-bit message block M = (M0, M1). The chaining value starts
from 2n-bit constant IV = (IV0, IV1) and the hash value is n-bit half (P0) of the final 2n-bit
chaining value P = (P0, P1).

We can define n-bit compression function dR (degenerated R), working with n-bit message
block M0 and n-bit chaining value P0, starting from the initialization value IV0. This function
leads to the same n-bit hash value as EDON-R, but has no precautions against multicollisions
and multipreimages attacks (because the chaining variable has the same width as the hash
value).

We can define the degenerated version of R by choosing special value of M1 in the message
block M = (M0, M1) and setting the variable P1 constant (= IV1) in any step of R.
Now, when P1 = IV1, we can define the second part of the message block as a function of the
first part and actual chaining value: M1 = g(P0, IV1, M0). Now from the chaining value P =
(P0, P1) and this message block M = (M0, M1) we obtain new chaining value
R(P0, IV1, M0, g(P0, IV1, M0)), what is according to Lemma 1, equal to (newP0, IV1). Also we
have newP0 = f(oldP0, oldP1, M0), but it is not important. The fact that the next step will start
from the value (* , IV1) enables us to define the "projection" correctly.
We define the projection of the function R as dR(P0, M0) ≡ R(P0, IV1, M0, g(P0, IV1, M0)), for
any values of (P0, M0). dR is in fact a new compression function which has n-bit chaining
value P0, n-bit message block M0 and starts from n-bit initializing value IV0. The compression
function dR thus creates an appropriate hash function (dEDON-R), which has n-bit hash value
equal to its last n-bit chaining value. Thus we have obtained the new hash function, which has
the same hash value as EDON-R. Because its chaining variable has the same length as the
hash value itself, there are no precautions of dEDON-R against multicollisions or
multipreimages attacks.

After finding multicollisions (or multipreimages) of dR, using generic attacks ([2] and [3]),
we need to project them back to the function R.
From any value of the chaining variable P0 and message block M0 of dR we can create the
chaining variable (P0, IV1) and the message block (M0, g(P0, IV1, M0)) of R. According to
Lemma 1, we have valid state of the function R, excepting the final block, going to the
compression function.

Note that the final block is the only point, when we cannot set the second part of the message
block arbitrarily (we need to set it to the special value g(P0, IV1, M0)). The reason is that (at
minimum) the last 64 +1 bits of this block have to be set to specified number, the padding.
This number is the smallest padding string, consisting of bit 1 and 64-bit number of hashed
bits. So, the last 65 bits of g(P0, IV1, M0) should be equal to the specified number. This will
happen with probability 2-65. The "brute solution" is to exclude any invalid block from the set
of obtained multicollisions (or multipreimages), what means to divide the number of them by
265. Even if 265 is a big number, it is negligible when comparing it to 2n/2 (n = 256, 512).
There are other ways how to bypass this "last block problem", but in this sketch of the proof
we won´t deal with them.

6

Note 3 (Mounting an attack from any starting value).
Note that we can start the attack (the projection) from Theorem 2 from any starting point. For
instance, we can use a prefix message, which ends with some value of the chaining variable
(P0, P1). From this point we can project R to dR.

Note 4 (Length extension attack using fixpoints).
The last block problem is that we need to have the last 65 bits of g(P0, IV1, M0) equal to bit 1
and the 64-bit number of hashed bits. Using a fix point in the center of the message, we can
lengthen the message by a lot of message blocks. In this way we can correct the length of the
message such that the bits 64, 63,..., 10, 9 (9 for n =256, 10 for n =512) from the end of g(P0,
IV1, M0) - the number of blocks - are correct.

Note 5 (Complexity of multicollision attack).
Using Theorem 1 and techniques from [2] we can create 2K multicollisions of EDON-R. The
complexity of the attack is roughly K*2n/2 hash computations and 2n/2 memory (n = 256, 512).
We will create one couple of colliding message blocks as is depicted in the Fig. 3 with the
complexity of 2n/2 hash computations and 2n/2 memory. K such couples will take the
complexity of K*2n/2 hash computations and 2n/2 memory (we reuse the memory). This
sequence of dR we project back to R using Theorem 2. Thus we have now the sequence of K
couples of blocks, ending in the same final chaining value (of the function R). We simply add
one 2n-bit message block with the correct padding and process it with the function R. This
will create the 2K multicollisions of EDON-R.

M1 Y0 Y1

M0

M1M0

Fig. 5: A tiny internal differential invariability in the compression function

7

4 Random walk backwards
Theorem 3 (A tiny internal differential invariability in the compression function R).
For any M0, there exist with high probability two different M1

* ≠ M1
~, one Y1 and two

different Y0
* ≠ Y0

~, such that
Y0

* = Q(rot M1
*, M0) and Y1 = Q(Y0

*, M1
*),

Y0
~ = Q(rot M1

~, M0) and Y1 = Q(Y0
~, M1

~),
where "rot" is the rotation, described in Note 1.
We can rewrite the theorem in this form: For a given fixed M0 we can find two different
inputs M1

* and M1
~ in the scheme of R (Fig. 5) such that there will be two different values of

Y0 (Y0
* and Y0

~), but only one value of Y1. So, the differences in M1 can´t be canceled in Y0,
but will be canceled in Y . 1

Sketch of the proof.
We substitute Y0

* = Q(rot M1
*, M0) into Y1 = Q(Y0

*, M1
*) and obtain

Y1 = Q(Q(rot M1
*, M0), M1

*) = F(Q(rot M1
*, M0)) + G(M1

*) = F(F(rot M1
*) + G(M0)) +

G(M1
*). We also substitute Y0

~ = Q(rot M1
~, M0) into Y1 = Q(Y0

~, M1
~) and obtain similarly

Y1 = F(F(rot M1
~) + G(M0)) + G(M1

~). So we want to find two different solution M1
* and M1

~
of the equation Y1 = F(F(rot M1) + G(M0)) + G(M1), where G(M0) is a constant. Because F
and "rot" are bijections on {0,1}n, we have a new bijection F1 on {0,1}n, defined by the
relation F1(M1) = F(F(rot M1

*) + const). We will find the two solutions of the equation Y1 =
F1(M1) + G(M1). It is possible to expect that the expression F1(M1) + G(M1), for M1 going
through all values of {0,1}n, determines random function f:{0,1}n →{0,1}n : M1 → F1(M1) +
G(M1). So, in the range f({0,1}n) there will be many collisions. We can find one of them by
birthday paradox. We generate 2n/2 of different random values M1 and then find a collision in
the f-image of them.
Complexity of this solution is the same as finding a collision of a n-bit hash function.

Note 6 (Using the pair M0, M1

* and M0, M1
~ only once).

In the following text it suffices to use only one pair of M0, M1
* and M0, M1

~, computed
according to the proof of Theorem 3. But for variability or for any other purposes we can
generate several such pairs for different M . 0

8

M1 Y0

newP1

Y1

newP0M0

M1M0

* ~

* ~* ~

M1

oldP0

oldP1

Y0

4

1

newP1

Y1

3

2

newP0M0

M1M0

* ~

* ~* ~

* ~

5

6

Fig. 6: Using the differential in half of the message block M1

Theorem 4 (Random walk backwards).
Let us choose one of the solutions of Theorem 3 (M0, M1

* and M0, M1
~). Let us set the

chaining variable of R to any value (newP0, newP1). Then we can easily compute two
different preimages of R, (oldP0

*, oldP1) and (oldP0
~, oldP1) such that

R(oldP0
*, oldP1, M0, M1

*) = R(oldP0
~, oldP1, M0, M1

~) = (newP0, newP1). These preimages
have half of the chaining variable (oldP) the same, whereas the remaining part is different. 1

Sketch of the proof.
The computation of (oldP0

*, oldP1) and (oldP0
~, oldP1) can be seen on the Fig.6. Let us first

compute the values Y0
* and Y0

~ and Y1 according to the Theorem 3. The values Y0
* and Y0

~
are different, but leading to the same value of Y1. The same values are yellow, the different
values are green and they are marked with * and ~. Now we will compute consequently
values marked 1, 2, 3, 4, 5, 6 in this order. We will compute them using the (QR). We can see
that in computing values 1 - 5, we always use the two arguments of the (QR) constant
(yellow). Only when we compute oldP0 in the step 6, we are using two different values of Y0.
This gives two different values of oldP0 (oldP0

* and oldP0
~).

9

M0[*]

P0

P1

P0*

P1´

P0~

P1´

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

M0[*]

M0[*]

Fig. 7: Random walk backwards

Note 7 (Getting multi-preimages of R).
According to the Theorem 4 we can start from any value of chaining variable (for instance
hash value, padded by n random bits) and go one step backwards. We obtain two different
preimages of the chaining variable of R. In the second step backwards we obtain 22 preimages
etc. and in the m-th step we have 2m preimages (of the final hash and even of the final
chaining value).

10

Conclusion
We show several properties of EDON-R compression function, which could be interesting for
the study of collisions and preimages.
 We show for instance how to degenerate 2n-bit chaining value of EDON-R to n-bit
chaining value. It makes EDON-R hash functions (for n = 256, 512) vulnerable to generic
multicollisions and multipreimages attacks ([2], [3]) with small additional work factor. The
complexity of obtaining 2K multicollisions is K*2n/2 (hash) computations and 2n/2 memory.

Acknowledgements
We would like to thank Danilo Gligoroski for helpful comments.

References
[1] Gligoroski D., Odegard R.S., Mihova M., Knapskog S.J., Kocarev L., Drapal A.:
 Cryptographic Hash Function EDON-R, October 2008, SHA-3 submission,
http://people.item.ntnu.no/~danilog/Hash/Edon-
R/Supporting_Documentation/EdonRDocumentation.pdf

[2] Joux A.: Multicollisions in iterated hash functions. Application to cascaded constructions,
 Proceedings of CRYPTO 2004, Spinger-Verlag, LNCS, Vol. 3152, pp. 430 – 440,
 2004.
[3] Kelsey J., Schneier B.: Second preimages on n-bit hash functions for much less than 2n

 work. Proceedings of EUROCRYPT 2005, Spinger-Verlag, LNCS, Vol. 3494, pp.
 474 – 490, 2005
[4] Khovratovich D., Nikolic I., Weinmann R. P.: Cryptanalysis of Edon-R,
http://lj.streamclub.ru/papers/hash/edon-r.pdf

11

http://people.item.ntnu.no/%7Edanilog/Hash/Edon-R/Supporting_Documentation/EdonRDocumentation.pdf
http://people.item.ntnu.no/%7Edanilog/Hash/Edon-R/Supporting_Documentation/EdonRDocumentation.pdf
http://lj.streamclub.ru/papers/hash/edon-r.pdf

	1 Introduction
	2 Collisions and fix points
	3 Multicollisions and multipreimages of EDON-R
	4 Random walk backwards

